
Hiding and Showing in Snap! Pedagogy
version 1.3, 4/19/23

Abstract. I think that in recent years there has been a change in how we think about the pedagogic
role of Snap!, perhaps not intentionally. It has to do with what is hidden and what is shown,
broadly speaking. I don't know whether the shift is good or bad; this is not a Policy Proposal, just
an invitation to discussion.

Background. I set out to write a more straightforward document, a request for two backward-
compatible changes to primitives to correct what I see as bad design decisions, mostly by me, long
ago. Here they are:

Almost all the time, if the starting value is greater than the ending value, you don't want to run
the code in the loop. The canonical example is FOR I = 1 TO (LENGTH (some list)). If the
current FOR would run backward (step size -1), the list is empty, and you don't want to run the
body of the FOR at all. Similarly, you want NUMBERS to report an empty list.

I knew all that back when I wrote the version of FOR in the BYOB Tools sprite. So why didn't I
do it as UP TO? Because at that time we wanted the code inside the tool blocks to be pedagogic.
That's why the HOFs had to be implemented recursively, even if an iteration over a Javascript
array would be quicker, for example. And that's why I wrote FOR like this:

The point of downward-stepping FOR was merely to show off the use of a ringed predicate
stored in a variable, in a reasonably convincing context.

Since we no longer have that implementation of FOR, why don't we do it right (i.e., stepping
upward)? Well, because of backward compatibility, and because Jens has applications for which
he finds the current behavior useful. So, let's give users the choice. (We can fight later about
which option should be the default. ☺)

And then I thought, "why am I asking for this kludgy menu instead of asking for a second UP
TO block for FOR and another for NUMBERS?" And that brings us to the beginning of the
discussion I want to have.

Hiding and Showing. Many of the design decisions we've made are about whether or not to show
the user some detail. Here are some examples:

1. Radically hiding primitives so that students see only the ones you want them to use in this
particular exercise (Parsons problems), to focus students' attention on just a few blocks.

1½. For the first several years of BYOB, though, we adamantly refused to implement hiding
primitives, because on principle we didn't want to hide anything from the user. What changed our
mind was Paul Goldenberg wanting the feature to teach math (not computer science) to early
childhood kids (not Operational (≥8 years old) kids). (And since then other teachers with similar
situations.) Details that are intellectually rich for a CS student can be distracting clutter to a
math student.

2. Hiding (behind Relabel) variants of primitives that are great exercises to implement in Snap!
(≤, ≠, ≥, min, max, etc.), to justify the exercises by pretending those functions aren't already
provided. In particular, we do this for functions written in BJC exercises.

2½. But we're both kinda embarrassed about this neither-fish-nor-fowl compromise.

3. Unevaluated input types, in the first instance, to implement reporter IF in a way that made
both us and the users happy. Listed here because the point is to keep the function-ness of an
input hidden:

If the IF reporter is written in Snap!, then the THEN and ELSE inputs are really functions, not
values, but they can't look like functions (in rings) because users might not know about those yet
(and because Those Other Languages hide the delayed evaluation in syntax).

3½. We remain proud of this one! It lets our users invent their own control structures, and,
importantly, we aren't hiding anything from our users; rather, our users are hiding the special
formness of their procedure from their users. That sounds like a quibble, but it's not; it's not
disempowering because next time it might be that kid writing a special form.

4. We limit the length of the palettes by relegating some things that maybe could be primitives
into libraries, which makes them less discoverable, but exposes the fact that you could write them
yourself in Snap! itself. Read that sentence again: hidden in one way, but exposed in another.

4½. This used to be an absolute rule; anything that could be written in Snap! would be written in
Snap!, and put in a library. Examples include, most notably, the higher order functions on lists—
arguably, the whole point of BYOB was to let kids write HOFs themselves—but also FOR, ASK,
TELL, CATCH, THROW, and many more. We boasted that we added just eight primitive
blocks to Scratch. But over time several of the library blocks have trickled into primitive status,
partly for speed of execution and partly to have them ready to hand when starting Snap!.

4¾. This policy shift is connected, in subtle ways, with the fact that the hyperblock feature has
made HOFs less crucial for using lists, so we worry less about how we present them to users. But
arguably that should have made us more willing to let the HOFs themselves run at Snap! speed
rather than at JavaScript speed, rather than more willing to hide their implementation.

4⅞. We have talked about, but not implemented, hybrid blocks, which run fast like primitives, but
have an editable user-visible definition like custom blocks.

5. Another way we limit the length of palettes is by cramming several operations into one
primitive block. For example, one of the obvious missing features in Scratch (as a deliberate
design decision on their part) is the ability to send a message to a specific sprite. We added that,

but instead of a block, we put this in the same BROADCAST block:

The variadic input(s) let us present the bare-bones, just-like-Scratch version, but with the subtle
arrowhead to suggest that there are variant versions to be discovered. (But maybe the arrowhead
means that you can broadcast more than one message at once? That's what it usually means: a
variadic input.) And this subtlety just reduces the palette by one entry. Is it worth it?

5½. The reductio ad absurdum of this technique is the LENGTH block:

A dozen different functions, quite different from each other, and only the first three arguably
related to LENGTH. It saves a ton of palette space! But really LENGTH is the only
discoverable one; most of the others won't be obvious even if you see their names. What's the
RANK of a list? Does FLATTEN flatten one level, or all the way down? And what on earth is

DISTRIBUTION? When we learned from APL to think of a list of lists as a multi-dimensional
array (such as a matrix), we thought, "what's the multi-dimensional equivalent of LENGTH"?
And APL's answer is DIMENSIONS (⍴); RANK is just an abbreviation for

 (⍴⍴). So those first three arguably go together. But the others
are connected with LENGTH only in that they have arity one and have lists as inputs. This
structure should be rethought, we're agreed.

5.51. What justifies this bizarre hiding of primitives behind a menu of names is the
transcendental function block we inherited from Scratch:

But this is already hiding more primitives than in Scratch. We added eight alternatives to the
original ten, almost doubling the length of the menu. And the original ten functions all have
numbers (including "Infinity") as their domain and range, computing (except for SQRT, which is
algebraic) transcendental functions. By the way,

is disconcerting. It might be better to use "∞," even though it may be unfamiliar to some young
users, because we can more plausibly treat that glyph as a digit.

5¾. But I still think the portmanteau

makes sense. It has a lot of options, but (except for SIZE) they're all about controlling the pen
color, and there are many ways to think about pen color because there just are; it's not our doing.
And all the variants are about SET PEN, which is this block's name.

6. There are still things that work in primitives but don't work in user custom blocks. One
example is grouping title text for an input with the input itself, in a variadic infix block:

As for any variadic input, clicking the right arrowhead adds an input slot. But it also adds the
plus sign, as title text before the new slot. Saying this another way, the right arrowhead adds a
group of things (two things, in this case) to the block. Users want to be able to do that in their
blocks, too, but so far they can't. This is a kind of hiding; we want to keep the custom block
input type dialog reasonably simple. In fact, the default UI to add an input slot is very simple:

That works fine for beginners. If you decide you want to specify a type for your input slot, then
you have to advance to the more complicated version:

By the way, the arrangement of types in that display isn't random; each row and each column
represent a category, although I may be the only Snap! user who's consciously aware of that, on
the assumption that nobody actually reads the manual. Still, the arrangement simplifies finding
the obscure types and connects each Unevaluated type with what it means (just above) and with
what it looks like (two rows up, except for Commands). So, we try to reduce the cognitive load
somewhat, while still giving users some flexibility. But, as an exercise, try to design the ability to
specify a variadic group of inputs, both how the users indicate a group in the "Create input name"
dialog and how the user of a custom block knows that the right arrowhead will add a group, not
just a single input slot. So far we haven't tackled that hard problem. We're very proud of the
simple input name dialog, along with a Settings option to start with the long form each time, for
more advanced users, but still kinda simple.

7. On the other hand, we are about to unveil a radical unhiding: showing users the innards of
expressions and procedure bodies via macros and metaprogramming. The central feature making this
possible is the ability to convert back and forth between executable code (the blocks and scripts
that we've always had) and syntax trees: lists of lists of the individual blocks and constant values
(such as text and numbers), the building blocks of expressions and scripts. That conversion
overcomes the only weakness of block languages, namely, that programs aren't data, which makes
them harder to manipulate programmatically.

7½. Pedagogically, this is an extension of the self-reflection by means of non-hidden
continuations, which call attention to the sequence of events in executing a script, and which we
inherited from Scheme. Continuations are conceptually simple for the implementor, since they
already exist in any interpreter for any language, and it's just a matter of making them visible to
users. But they're not conceptually simple for users! The fact that they can be called repeatedly,
and from outside of the script in which they were created, feels like magic. And it is; it's the
magic of "everything first class." But the point here is that we didn't add this feature in response
to a specific pedagogic need. Rather, explicit continuations help advanced programmers write
advanced programs, and a few library blocks. And they're a way to plant the flag of Scheme in
Snap!, which was a big part of our motivation.

8. Dating back to BYOB, we have two internal representations for lists: as Javascript arrays and as
linked pairs as in Lisp. The reason is that certain functions of lists that are implemented
recursively have 𝜽(n²) asymptotic behavior for arrays but 𝜽(n) behavior for linked lists. It turns out
that n has to be very large for the asymptotic behavior to outweigh the constant-factor advantage
of using the primitive features of the implementation language. Still, here we are with two
internal representations of lists. This is an opportunity to teach the first lesson of a data
structures class, but we deliberately pass it up, taking pains not to show the user which
representation we use for any particular list. That choice reflects the desire to have lists "just
work" for users, without having to know their implementation. (The implementation breaks
through, however, when the user mutates the list and runs into the fact that linked lists can share
data.) By hiding the implementation, we in effect stake out the position that we know what's
good for you better than you do. I take the full credit and/or blame for that choice. Its
pedagogic intent is to lower the barrier to entry for lists, partly because they were considered
difficult and esoteric by Scratch users, in the early days.

9. Dating even earlier, we've inherited from Scratch the grammatical specialness of numeric input
slots. They're round instead of rectangular, and the characters you can type into them are
restricted to digits, a minus sign in front, and the letter "e." (You can actually include more than
one "e," but if you do arithmetic on such a supposed number, you get NaN as the result.) Every
so often someone suggests that we accept "0x" at the front and digits a-f, but the real question is
why we have syntactic restrictions in these input slots at all. Of our dozen-odd data types, why
are only numeric slots restricted at the level of typing inputs into input slots? When you load the
library that implements the complete Scheme numeric tower, including bignums, exact rationals,
and complex numbers, you find yourself wanting to type "2/3" or "4+3i" into a numeric input
slot and not being able to. The syntactic restriction doesn't work anyway, because you can put
any function call into any slot, and we don't know what type of value your function will return

until it does so, and so there's also a semantic restriction when arithmetic expressions are
evaluated, and so the syntactic restriction is redundant. Mostly the story we tell about input slots
is that their visual type indicators (round slot for numbers, gray ring for procedures, stacks of
elements for lists, etc.) are advisory, not enforced.

There is a somewhat better answer to "why?" than just "because Scratch." Numbers and strings
are the only data types that are entered directly through the keyboard. So you can't type, say, a
number into a list slot, because you can't type anything into a list slot. You have to drag a reporter
into the slot; to use a constant list, you use a LIST reporter. Typing a non-numeric text into a
numeric input slot is the only syntactic restriction that wouldn't exist if it weren't explicit. From
this point of view, Snap! is already more syntactically rigid than it seems at first glance. But, for
example, we don't take advantage of the hexagonal shape of Boolean input slots to limit those
slots to accepting hexagonal blocks, as Scratch does. Scratch doesn't have custom reporter
blocks, so it's only a handful of primitive predicate functions that can fit into a Boolean slot. But
we can have user functions that return, e.g., a list, if one is found that satisfies some condition, or
False, if not. So we have to accept round reporter blocks in hexagonal slots.

What's hidden or shown here is syntactic restriction, if you tend toward wanting no restrictions;
or semantic types shown through syntax, if you tend toward wanting Java-style type declarations.
Dan Garcia has been a strong advocate for (optional) type checking. On the other hand,
hyperblocks allow list inputs in pretty much any scalar input slot, so one data type would be "lists
in which every element satisfies the same condition"—lists of lists of ... of numbers, rather than
just plain numbers. (But a just plain number matches any shaped list.)

Some tentative conclusions.

When we started working on BYOB3, our straightforward goal was to give kids access to pretty
traditional computer science: algorithms, data structures, programming paradigms, recursion (not
just as looping), and so on. That's still the goal of BJC, which developed in parallel with BYOB.
But another educational strategy, exemplified by media computation, is to teach application-
driven topics. Even in BJC, there was originally a page called MAP, a page called KEEP, and a
page called COMBINE; now, instead, there's a Contacts app like the one on a phone (albeit
simpler) and the higher order functions are introduced as needed to maintain the contact list.
The SAP-housed curriculum is even more application-driven. The changes around hiding vs.
showing are largely situated in the larger change from big-idea-driven to application-driven. But
it's crucial to remember that that change isn't just in CS education. Since the sudden rise in Data
Science as an intellectual enterprise, research computer science itself is more and more
application-driven, guided by collaboration with non-CS faculty. Technically, the computer
science is largely embedded in statistics. So what's happening in Snap! curriculum isn't a struggle
between CS and applications; it mirrors changes in CS itself.

To a first approximation, hiding is good for beginners; showing is good for more advanced users.
In one case we've explicitly designed for both cases, namely the input dialog with its short and
long forms. (See #6 above.) In most other cases, we've made one choice, often based not on
principled reasons but rather on courage (showing) or timidity (hiding) about how much users can
understand. We should consider whether dual designs could help in other cases as well.

Making the palette smaller isn't a good reason to increase the complexity of blocks. We
know a better way: letting users show or hide a palette subcategory explicitly in the UI, with
arrowheads in front of subcategory names. (In boldface because I feel quite confident about this
one, although Jens isn't convinced.)

More generally, we should agree that things in dropdown menus don't count as discoverable.

The long form input dialog can be made the default with a Settings checkbox. If we extend dual
design to other areas of the implementation, we run the risk of greatly expanding the Settings
menu. Maybe menus, too, need subcategories that users can show and hide.

But mainly, we need a discussion of a general policy for hiding and showing, rather than deal
with each specific case as it comes up.

