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ABSTRACT

Modern data analytics applications typically process massive
amounts of data on clusters of tens, hundreds, or thousands of ma-
chines to support near-real-time decisions. The quantity of data and
limitations of disk and memory bandwidth often make it infeasible
to deliver answers at interactive speeds. However, it has been widely
observed that many applications can tolerate some degree of inac-
curacy. This is especially true for exploratory queries on data, where
users are satisfied with “close-enough” answers if they can come
quickly. A popular technique for speeding up queries at the cost of
accuracy is to execute each query on a sample of data, rather than the
whole dataset. To ensure that the returned result is not too inaccu-
rate, past work on approximate query processing has used statistical
techniques to estimate “error bars” on returned results. However,
existing work in the sampling-based approximate query processing
(S-AQP) community has not validated whether these techniques ac-
tually generate accurate error bars for real query workloads. In fact,
we find that error bar estimation often fails on real world produc-
tion workloads. Fortunately, it is possible to quickly and accurately
diagnose the failure of error estimation for a query. In this paper, we
show that it is possible to implement a query approximation pipeline
that produces approximate answers and reliable error bars at inter-
active speeds.

Categories and Subject Descriptors
H.2.4 [Systems]: Query processing
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1. INTRODUCTION

Sampling-based approximate query processing (S-AQP) has a
long history in databases. Nearly three decades ago, Olken and
Rotem [27] introduced random sampling in relational databases as
a means to return approximate answers and reduce query response
times. A large body of work has subsequently proposed different
sampling techniques [7, 8, 13, 14, 15, 21, 23, 30, 31, 36]. All of this
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work shares the same motivation: sampling can dramatically im-
prove the latency and resource costs of queries. Indeed, sampling
can produce a greater-than-linear speedup in query response time
if the sample can fit into memory but the whole dataset cannot, en-
abling a system to return answers in only a few seconds. Research
on human-computer interactions, famously the work of Miller [25],
has shown that such quick response times can make a qualitative
difference in user interactions.

However, approximate answers are most useful when accompa-
nied by accuracy guarantees. Therefore, a key aspect of almost all
S-AQP systems is their ability to estimate the error of their returned
results. Most commonly, error estimates come in the form of con-
fidence intervals (a.k.a. “error bars”) that provide bounds on the er-
ror caused by sampling. Such error estimates allow the AQP sys-
tem to check whether its sampling method produces results of rea-
sonable accuracy. They can also be reported directly to users, who
can factor the uncertainty of the query results into their analyses
and decisions. Further, error estimates help the system control er-
ror: by varying the sample size while estimating the magnitude of
the resulting error bars, the system can make a smooth and con-
trolled trade-off between accuracy and query time. For these rea-
sons, many methods have been proposed for producing reliable er-
ror bars—the earliest being closed-form estimates based on either
the central limit theorem (CLT) [32] or on large deviation inequal-
ities such as Hoeffding bounds [19]. Unfortunately, deriving closed
forms is often a manual, analytical process. As a result, closed-form-
based S-AQP systems [7, 8, 13, 14, 15, 21, 31] are restricted to very
simple SQL queries (often with only a single layer of basic aggre-
gates like AVG, SUM, COUNT, VARIANCE and STDEV with projections,
filters, and a GROUP BY). This has motivated the use of resampling
methods like the bootstrap [23, 30], since these methods require no
such detailed analysis and can be applied to arbitrarily complex SQL
queries. In exchange, the bootstrap adds some additional overhead.

Beyond these computational considerations, it is critical that the
produced error bars be reliable, i.e., that they not under- or overesti-
mate the actual error. Underestimating the error misleads users with
a false confidence in the approximate result, which can propagate to
their subsequent decisions. Overestimating the error is also unde-
sirable. An overestimate of error forces the S-AQP system to use
an unnecessarily large sample, even though it could achieve a given
level of accuracy using a much smaller sample (and hence much less
computation). Approximation is most attractive when it is achieved
with considerably less effort than needed for fully accurate results,
so inflating sample sizes is problematic.

Unfortunately, no existing error estimation technique is ideal.
Large deviation inequalities (e.g., Hoeffding bounds used in [7, 21])
can provide very loose bounds in practice [21], leading to overesti-
mation of error and thus an unnecessary increase in computation.
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Figure 1: Sample sizes suggested by different error estimation
techniques for achieving different levels of relative error.

For instance, in Fig. 1, we show the sample sizes needed to achieve
different levels of relative error (averaged over 100 Hive queries from
production clusters at Conviva Inc. on tens of terabytes of data' with
vertical bars on each point denoting .01 and .99 quantiles). If the
AQP system were to believe the error estimates of these different
techniques, a system relying on Hoeffding bounds must use sam-
ples that are 1-2 orders of magnitude larger than what is otherwise
needed, diminishing the performance benefits of approximation.
On the other hand, CLT-based and bootstrap-based error estima-
tion methods—while being significantly more practical than large
deviation inequalities—do not always yield accurate error estimates
either. These techniques are guaranteed to work well only under reg-
ularity assumptions (in particular, assumptions on the smoothness of
query aggregates) that are sometimes unrealistic and can produce
both underestimates and overestimates in practice. Prior work has
not vetted their accuracy.

In fact, as we show in this paper, accuracy is a surprisingly seri-
ous problem in practice. When we evaluated these schemes on real
queries and data from Facebook (see §3 for details), we found that
the most accurate and general estimation technique, the bootstrap,
often produces error bars that are far too wide or too narrow for
23.94% and 12.2% of queries respectively. While CLT-based closed-
form techniques are applicable to only 56.78% of the overall queries
at Facebook, they also produce incorrect error estimates for 24.86%
of the total queries. Though error estimation fails predictably on
some kinds of queries on certain kinds of datasets, failure is not easy
to predict in most cases.

In AQP, unlike some applications of statistics, it is always possi-
ble to fall back to a slower, more accurate solution. In most cases,
correct error bars (i.e., the ground truth error) can be computed for
any approximate query, though at some expense, by re-executing the
query many times over new samples. Of course, the query can also
be executed on the full data, obviating the need for error estimation.
There is a spectrum of techniques in between these expensive-but-
reliable methods and cheap-but-unreliable estimation techniques
like closed-forms. What is really missing is a way to identify quickly
whether a particular technique will work well for a particular query.
With such a tool in hand, we could use cheap error estimation in the
majority of situations, while falling back to more expensive methods
when we know the cheap ones will produce undesirable results.

The past decade has seen several investigations of such diagnos-
tic methods in the statistics literature [12, 22]. Recently, Kleiner et
al. [22] designed a diagnostic algorithm to detect when bootstrap-
based error estimates are unreliable. However, their algorithm was
not designed with computational considerations in mind and in-

' A more detailed description of our datasets and experiments is pre-
sented in §7.

volves tens of thousands of test query executions, making it pro-
hibitively slow in practice.

In this paper, we extend this diagnostic algorithm to validate mul-
tiple procedures for generating error bars at runtime and present a
series of optimization techniques across all stages of the query pro-
cessing pipeline that reduce the running time of the diagnostic algo-
rithm from hundreds of seconds to only a couple of seconds, making
it a practical tool in a distributed AQP system. As a demonstration
of the utility of the diagnostic, we integrate bootstrap-based error
estimation techniques and the diagnostics into BlinkDB [8], a re-
cent open-sourced AQP database system. With the diagnostic in
place, we demonstrate that BlinkDB can answer a range of complex
analytic queries on large samples of data (of gigabytes in size) at in-
teractive speeds (i.e., within a couple of seconds), while falling back
to non-approximate methods to answer queries whose errors cannot
be accurately estimated. Overall, our contributions are as follows:

1. First, we use a large set of real queries and data from Face-
book and Conviva to demonstrate that several existing tech-
niques for producing error bars are sometimes dangerously
inaccurate (§3). To support this intuition, we provide some
accessible background on how these techniques work, how to
evaluate them, and why they can fail (§2).

2. Second, we show that we can use a diagnostic technique to
validate multiple procedures for generating error bars at run-
time ($4). This makes it possible to diagnose and avoid re-
vealing inaccurate error bars to users in most cases.

3. Third, we provide several optimizations that make the diag-
nostic and the procedures that generate error bars practical,
ensuring that these procedures do not affect the interactivity
of the overall query (§s, §6).

4. Finally, using these optimizations and by leveraging recent
systems for low-latency exact query processing, we demon-
strate a viable end-to-end system for approximate query pro-
cessing using sampling. We show that this system can deliver
interactive-speed results for a wide variety of analytic queries
from real world production clusters (§7).

2. BACKGROUND

A key aspect of approximate query processing is estimating the er-
ror of the approximation, a.k.a. “error bars”. However, existing tech-
niques for computing error bars are often inaccurate when applied
to real-world queries and datasets. This result is simply stated, but
the intuition behind it may be unclear. We first provide some back-
ground on how the large variety of available error estimation tech-
niques work, and why and when they might fail.

2.1 Approximate Query Processing (AQP)

We begin with a brief overview of a query approximation frame-
work. Let 6 be the query we would like to compute on a dataset D,
so that our desired query answer is (D). For example, consider the
following query, which returns the average session times of users of
an online service from New York City:

SELECT AVG(Time)
FROM Sessions
WHERE City = ‘NYC’

The 0 corresponding to this query is:

ICIEEID)

teagiry = ‘nyc (D)

t.Time (1)



where N is the total number of tuples processed and t.Time refers
to the Time attribute in tuple t.

It is common for an analytical (a.k.a. OLAP) query to evaluate
one or more such aggregate functions, each of which may output a
set of values (due to the presence of GROUP BY). However, for the
sake of simplicity, we assume that each query evaluates a single ag-
gregate function that returns a single real number. When a query in
our experimental dataset produces multiple results, we treat each re-
sult as a separate query. Additionally note that, while we focus on 8s
that encode analytical SQL queries, 6 could instead correspond to a
different aggregation function, like a MapReduce job in EARL [23].

When the size of the dataset (|D|) is too large or when the user
prefers lower latency than the system can deliver, it is possible to
save on I/O and computation by processing the query on less data,
resorting to approximation. In particular, sampling has served as
one of the most common and generic approaches to approximation
of analytical queries [7, 8, 13, 14, 15, 21, 23, 30, 31]. The simplest form
of sampling is simple random sampling with plug-in estimation. In-
stead of computing 6(D), this method identifies a random sample
S ¢ D by sampling n = |S| < |D| rows uniformly at random from
D with replacement’, and then returns the sample estimate 6(S) to
the user’. Since 6(S) depends on the particular sample we iden-
tified, it is random, and we say that it is a draw from its sampling
distribution Dist(6(S)). The random quantity ¢ = 6(S) — 6(D) is
the sampling error; it also has a probability distribution, which we
denote by Dist(e).

2.2 Error Estimation

As we have noted, it is critical for any AQP system to know some
kind of summary of the typical values of ¢ for any query. Like 8(D),
this summary must be estimated from S, and this estimation pro-
cedure may suffer from error. The particular summary chosen in
most AQP systems is the confidence interval, a natural way to sum-
marize an error distribution concisely. A procedure is said to gen-
erate confidence intervals with a specified coverage « € [0,1] if, ona
proportion exactly a of the possible samples S, the procedure gen-
erates an interval that includes 8(D). Typically, « is set close to 1
so that the user can be fairly certain that (D) lies somewhere in
the confidence interval. Thus, confidence intervals offer a guarantee
that is attractive to users.

Procedures for generating confidence intervals do not always
work well, and we need a way to evaluate them. Unfortunately, to
say that a procedure has correct coverage is not enough to pin down
its usefulness. For example, a procedure can trivially achieve & cov-
erage by returning (—oo, c0) a of the time, and & the rest of the
time; obviously, this procedure is not helpful in estimating error.

To resolve this technical problem, we choose to use symmetric
centered confidence intervals. These do not have the unreasonable
behavior of the above example, and further, it is possible to evaluate
them as estimates of a ground truth value i.e., the interval centered
around 6(D) that covers exactly the proportion « of the sampling
distribution of 6(S), Dist(6(S))*. Though it is not really a con-

*We assume that samples are taken with replacement only to sim-
plify our subsequent discussion. In practice, sampling without re-
placement gives slightly more accurate sample estimates.

3 Another function 8(S) may be used to estimate (D). For exam-

ple, when 6 is SUM, a reasonable choice of § would be the sample

sum multiplied by a scaling factor %. The proper choice of 6 for a

given 6 is not the focus of this paper and has been discussed in [26].
For simplicity of presentation we assume here that 0 is given and
that it appropriately handles scaling.

“This interval is not technically unique, but for moderately-sized D
it is close to unique.

fidence interval, since it is deterministic and always covers 6(D),
in a slight abuse of terminology we call this ground truth value the
true confidence interval. The procedure for generating symmetric
centered confidence intervals from samples closely mimics the def-
inition of the true value. Given a sample, we can estimate 8(D) as
usual by 6(S). As we detail in the next section, various error esti-
mation techniques can be used to estimate the sampling distribution
Dist(6(S)). These two estimates (6(S) and the estimate of its distri-
bution) are in turn used to produce a confidence interval by finding
an interval centered on 6(S) covering « of the estimated sampling
distribution. This interval can be computed by finding the number
a that satisfies P([0(S) — a,0(S) + a]) = a, where P is the esti-
mate of Dist(6(S)). We can evaluate such a confidence interval by

comparing its width with that of the true confidence interval, i.e.,
b mputing & = (true confidence interval width)—(estimated interval width) If
y compuling o = (true confidence interval width) :

this quantity is much above or below zero for a particular query,
we can declare that confidence interval estimation has failed in that
case. Unlike coverage, this evaluation fully captures problems with
error estimation. See [20] for a more detailed discussion of symmet-
ric centered confidence intervals.

2.3 Estimating the Sampling Distribution

We now turn to the problem of estimating Dist(6(S)) using only
a single sample S. There are three widely-used methods: the boot-
strap [16, 40]; closed-form estimates based on normal approxima-
tions; and large deviation bounds [24]. It may be unclear why they
could fail, and in order to aid intuition we provide a brief explana-
tion of the methods.

2.3.1 Nonparametric Bootstrap

Given unlimited time and access to the entire dataset D, we could
compute the sampling distribution to arbitrary accuracy by taking a
large number K of independent random samples from D (in exactly
the same way as we computed S) and computing 6 on each one,
producing a distribution over sample estimates. As K — oo, this
would exactly match the sampling distribution.

However, actually accessing D many times would defeat the pur-
pose of sampling, namely, the need to use only a small amount of
data. Instead, Efron’s nonparametric bootstrap [16] (or simply the
bootstrap) uses the sample S in place of the dataset D, just as we
used 6(S) as an estimate for §(D) earlier. This means we take K
“resamples” of size n (with replacement’) from S, which we denote
S'; compute (') for each one; and take this “bootstrap resampling
distribution” as our estimate of the sampling distribution. We make
a further approximation by taking K to be merely a reasonably large
number, like 100 (K can be tuned automatically [17]).

The substitution of S for D in the bootstrap does not always work
well. Roughly, its accuracy depends on two things®:

1. The sensitivity of 0 to outliers in D: If 6 is sensitive to rare
values and D contains such values, then the estimate can be
poor (consider, for example, 6 = MAX).

2. The sample size n: When the sensitivity condition is met, the-
ory only tells us that the estimate is accurate in the limit as
n — oo. The estimate can be poor even for moderately large
n (for example 1, 000, 000), and the theory gives no guidance

*Note that, since the resamples are taken with replacement, the S i
are not simply identical to S, even though they are all samples of size
n =S| from S.

®There are two standard books by Van der Vaart ([34, 35]) that treat
this in great detail.
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Figure 2: The computational pattern of the bootstrap.

on the requirements for n. It should be noted that the rela-
tionship between n and the accuracy of error bars is an ex-
act analogue of the relationship between 7 and the size of the
sampling error |¢. It is therefore unlikely that the dependence
on n will be avoided by finding a different method for com-
puting confidence intervals; any reasonable method will suf-
fer from some inaccuracy at small # and improve in accuracy
as 1 grows.

In addition to the possibility of failure, the bootstrap involves a
large amount of computation (K replications of the query on re-
samples), which can partially offset the benefits of sampling. Fig. 2
illustrates the use of the bootstrap in computing confidence intervals
and its potential cost. This motivates the consideration of alternative
methods.

2.3.2  Normal approximation and closed-form esti-
mate of variance

This method approximates the sampling distribution by a normal
distribution N(6(S),0*) and estimates the variance ¢” by a spe-
cial closed-form function of the sample. We call this closed-form
estimation for short. The normal approximation is justified by ap-
pealing to the central limit theorem. Like the bootstrap, this rests
on assumptions of insensitivity of 8 to outliers in D and on # be-
ing large. However, closed-form estimation replaces the brute-force
computation of the bootstrap with estimation of the parameter ¢*
from S through careful manual study of 6. For example, a well-
known estimate for 0> when 0(S) is AVG is s* = V‘“T(g) Calculating
Var(S) is much cheaper than computing K bootstrap replicates, so
in the case of AVG, closed-form estimation is appealing. The story is
similar for several 6s commonly used in SQL queries: COUNT, SUM,
AVG, and VARIANCE. Other s require more complicated estimates
of ¢, and in some cases, like MIN, MAX, and black-box user defined
functions (UDFs), closed-form estimates are unknown. Therefore,
closed-form estimation is less general than the bootstrap. In our
Facebook trace, 37.21% of queries are amenable to closed-form es-
timates. Fig. 7(a) shows the overhead of estimating the error using
closed forms for a set of 100 randomly chosen queries that computed
COUNT, SUM, AVG, or VARIANCE from our Facebook trace. When
closed-form estimation is possible, it generally runs faster than the
bootstrap.

2.3.3 Large Deviation Bounds

Large deviation bounds’ [24] are a third technique for error estima-
tion, used in several existing AQP systems including OLA[21, 19]
and Aqua[7]. Rather than directly estimating the sampling distri-
bution like the bootstrap and closed forms, this method bounds the
tails of the sampling distribution; these bounds are sufficient to com-

7There are many examples of such bounds, including Hoeffding’s in-
equality, Chernoff’s inequality, Bernstein’s inequality, McDiarmid’s
inequality, or the bounded-differences inequality.

pute confidence intervals. The method relies on the direct computa-
tion of a quantity related to the “sensitivity to outliers” (for example,
| max D — min D| in the case of SUM) that, as previously mentioned,
can ruin the accuracy of bootstrap- and closed-form-based error es-
timation. This sensitivity quantity depends on D and 6, so it must
be precomputed for every 6 and, like ¢” in closed-form estimation,
requires difficult manual analysis of 6. By making a worst-case as-
sumption about the presence of outliers, large deviation bounds en-
sure that the resulting confidence intervals never have coverage less
than a. That is, error bars based on large deviation bounds users
will never be too small. However, this conservatism comes at a great
cost: as we observe in Fig. 1, typically large deviation bounds instead
produce confidence intervals much wider than the true confidence
interval and with coverage much higher than «, making them ex-
tremely inefficient in practice.

3. PROBLEM: ESTIMATION FAILS

As noted in the previous section, all three estimation methods have
modes of failure. We've already highlighted the pessimistic nature of
large deviation bounds in Fig. 1, and in this section we evaluate the
severity of these failure modes for the bootstrap and closed-form es-
timation. Recall that we can summarize the accuracy of a symmetric
centered confidence interval by §, the relative deviation of its width
from that of the true interval. Ideally, we would like § to be close to
zero. If it is often positive and large, this means our procedure pro-
duced confidence intervals that are too large, and the intervals are
typically larger than the true sampling error . In that case, we say
that the procedure is pessimistic. (In Fig. 1, we saw an example- con-
fidence intervals based on Hoeffding bounds suffer from extreme
pessimism.) On the other hand, if § is often much smaller than o,
then our procedure is producing confidence intervals that are mis-
leadingly small, and we say that it is optimistic.

The two cases result in different problems. A pessimistic error es-
timation procedure will cause the system to use inefliciently large
samples. For example, say that for a particular query and sample
size we have 6(D) = 10, 6(S) = 10.01, and we produce the confi-
dence interval [5.01,15.01]. If the user requires a relative error no
greater than 0.1%, the system is forced to use a much larger sample,
even though 6(S) is actually accurate enough. Without a fixed re-
quirement for error, pessimistic error estimation will lead the user
to disregard 0(S) even when it is a useful estimate of (D).

While pessimistic error estimation results in decisions that are
too conservative, an optimistic error estimation procedure is even
worse. If for a different query we have 8(D) = 10, 6(S) = 15, and the
system produces the confidence interval [14.9,15.1], then the user
will make decisions under the assumption that 6(D) probably lies
in [14.9,15.1], even though it is far away. Since pessimism and op-
timism result in qualitatively different problems, we present them
as two separate failure cases in our evaluation of error estimation
procedures.

To test the usefulness of error estimation techniques on real
OLAP queries, we analyzed a representative trace of 69, 438 Hive
queries from Facebook constituting a week’s worth of production
queries during the 1% week of Feb 2013 and a trace of 18,321 Hive
queries from Conviva Inc. [4] constituting a sample of a month’s
worth of production queries during Feb 2013. Among these, MIN,
COUNT, AVG, SUM, and MAX were the most popular aggregate func-
tions at Facebook constituting 33.35% , 24.67%, 12.20%, 10.11% and
2.87% of the total queries respectively. 11.01% of these queries con-
sisted of one or more UDFs or User-Defined Functions. In Conviva,
on the other hand, AVG, COUNT, PERCENTILES, and MAX were the
most popular aggregate functions with a combined share of 32.3%.
42.07% of the Conviva queries had at least one UDE While we are



unable to disclose the exact set of queries that we used in our analy-
sis due to the proprietary nature of the query workload and the un-
derlying datasets, we have published a synthetic benchmark [1] that
closely reflects the key characteristics of the Facebook and Conviva
workloads presented in this paper- both in terms of the distribution
of underlying data and the query workload. The input data set in
this benchmark consists of a set of unstructured HTML documents
and SQL tables that were generated using Intel's Hadoop benchmark
tools [6] and data sampled from the Common Crawl [3] document
corpus. The set of aggregation queries and the UDFs in the bench-
mark are characteristic of the workload used at Conviva.

For each query in our dataset, we compute the true values of (D)
and the true confidence interval and then run the query on 100 dif-
ferent samples of fixed size n = 1,000, 000° rows. For each run, we
compute a confidence interval using an error estimation technique,
from which we get 8. We then pick a reasonable range of [-0.2,0.2],
and if § is outside this range for at least 5% of the samples, we de-
clare error estimation a failure for the query. We present separately
the cases where § > 0.2 (i.e., pessimistic error estimation) and where
0 < —o.2 (i.e., optimistic and incorrect error estimation). In addition,
since only queries with COUNT, SUM, AVG, and VARIANCE aggre-
gates are amenable to closed-form error estimation, while all aggre-
gates are amenable to the bootstrap, 43.21% of Facebook queries and
62.79% Conviva queries can only be approximated using bootstrap
based error estimation methods. Results are displayed in Fig. 3.

Queries involving MAX and MIN are very sensitive to rare large or
small values, respectively. In our Facebook dataset, these two func-
tions comprise 2.87% and 33.35% of all queries, respectively. Boot-
strap error estimation fails for 86.17% of these queries. Queries in-
volving UDFs, comprising 11.01% of queries at Facebook and 42.07%
of queries at Conviva, are another potential area of concern. Boot-
strap error estimation failed for 23.19% of these queries.
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Figure 3: Estimation Accuracy for bootstrap and closed-form
based error estimation methods on real world Hive query work-
loads from Facebook (69, 438 queries) and from Conviva Inc.
(18, 321 queries).

4. DIAGNOSIS

It is clear from this evaluation that no type of error estimation gives
completely satisfactory results. Without a one-size-fits-all error esti-
mation technique, we need an algorithm to identify the cases where
the non-conservative methods work and the cases where we must
use conservative large deviation bounds or avoid sampling alto-
gether. We call such a procedure a diagnostic. We are going to use
a diagnostic recently developed by Kleiner et al. [22], but first let

1 = 1,000, 000 was chosen so that the query running time could
fairly be called “interactive”.

us provide some intuition for how a diagnostic should work. We
consider first an impractical ideal diagnostic.

To check whether a particular kind of error estimation for a query
0 on data S is likely to fail, we could simply perform the evaluation
procedure we used to present results in the previous section. That is,
we could sample repeatedly (say p = 100 times) from the underlying
dataset D to compute the true confidence interval, estimate a con-
fidence interval on each sample using the error estimation method
of interest, compute ¢ for each one, and check whether most of the
Js are close to o. If we use a sufficient number of samples, this ideal
procedure will tell us exactly what we want to know. However, it
requires repeatedly sampling large datasets from D (and potentially
executing queries on K bootstrap resamples for each of these sam-
ples), which is prohibitively expensive.

This is reminiscent of the problem of computing the confidence
intervals themselves. A simple solution in that case was the boot-
strap, which approximates the sampling distribution by resampling
from the sample S. We could apply the same idea here by replacing
0 with the bootstrap error estimation procedure, thus bootstrapping
the bootstrap. However, in this case we are trying to test whether the
bootstrap itself (or some related error estimation technique) works.
If the bootstrap provides poor error estimates, it may also work
poorly in this diagnostic procedure. So we need something else.

Alternatively, we can also approximate the ideal diagnostic by
performing it on a sequence of much smaller samples and extrap-
olating the results to the actual sample, S. This is the basis of the
diagnostic procedure of Kleiner et al. It is motivated computation-
ally by the following observation: if S is a simple random sample
from D, then subsamples generated by disjointly partitioning S are
themselves mutually independent simple random samples from D.
Thus, by partitioning S we can identify small samples from D with-
out performing additional I/O. Of course, the effectiveness of an er-
ror estimation technique on small samples may not be predictive of
its effectiveness on S. Therefore, careful extrapolation is necessary:
we must perform the procedure at a sequence of increasing sam-
ple sizes, (b, ..., bx) and check whether the typical value of & de-
creases with b; and is sufficiently small for the largest sample size by.
The disjointness of the partitions imposes the requirement that each
sample size b;, multiplied by the number of samples p, be smaller
than S.

4.1 Kleiner et al.’s Diagnostics

The details of the checks performed by the diagnostic are not critical
for the remainder of this paper. The diagnostic algorithm, as applied
to query approximation, is described precisely in Algorithm 1in Ap-
pendix A. Fig. 4(a) depicts the pattern of computation performed by
the diagnostic.

Kleiner et al. targeted the bootstrap in their work and carried out
an evaluation only for the bootstrap, but also noted in passing that
the diagnostic can be applied in principle to any error estimation
procedure, including closed-form CLT-based error estimation, sim-
ply by plugging in such procedures for . However, this assertion
needs evaluation, and indeed it is not immediately clear that the di-
agnostic will work well for query approximation, even for the boot-
strap. The extrapolation procedure is merely a heuristic, with no
known guarantees of accuracy.

4.2 Diagnosis Accuracy

We demonstrate the diagnostic’s utility in query approximation by
providing a thorough evaluation of its accuracy on Facebook and
Conviva queries for both bootstrap and closed form error estima-
tion. We used two different datasets to evaluate the diagnostic’s ef-
fectiveness on real world workloads. The first dataset was derived
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Figure 4: Fig. 4(a) shows the pattern of computation performed
by the diagnostic algorithm for a single subsample size. Here
the procedure being checked is the bootstrap, so each subsample
is resampled many times. For each subsample $’, the bootstrap
distribution (6(S!),0(S),...) is used to compute an estimate of
&, which is assessed for its closeness to the value of ¢ computed
on the distribution of values (6(S"), 6(S*), ...). The computation
pictured here is performed once for each subsample size b;, using
the same sample S. Figures 4(b) and 4(c) compare the diagnos-
tics success for Closed Form and Bootstrap error estimation re-
spectively. For 4(b), we used a workload of 100 queries each from
Conviva and Facebook that only computed AVG, COUNT, SUM,
or VARTIANCE. For 4(c), we used a workload of 250 queries each
from Conviva and Facebook that computed a variety of complex
aggregates instead.

from a subset of 350 Apache Hive [33] queries from Conviva Inc. [4].
100 of these queries computed AVG, COUNT, SUM, or VARIANCE,
and the remaining 250 included more complicated expressions for
which error estimates could be obtained via the bootstrap. This
dataset was 1.7 T'B in size and consisted of 0.5 billion records of me-
dia accesses by Conviva users. The second dataset was one derived
from Facebook Inc. and was approximately 97.3 TB in size, span-
ning over 4o billion records in different tables. As with the Conviva
queries, we picked sets of 100 and 250 queries for evaluation respec-
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Figure 5: Workflow of a Large-Scale, Distributed Approximate
Query Processing Framework

tively suited for closed-forms and bootstrap based error estimation
techniques. The performance of the diagnostic algorithm is a func-
tion of a variety of statistical parameters, all of which affect the ac-
curacy of the underlying diagnosis. Fig. 4 compares the success ac-
curacy of the diagnostics over the set of queries from Facebook and
Conviva for our experiments. Overall, with these diagnostic set-
tings in place, we predict that 84.57% of Conviva queries and 68% of
Facebook queries can be accurately approximated while the others
cannot, with less than 3.1% false positives and 5.4% false negatives.

S. ERROR ESTIMATION PIPELINE
ARCHITECTURE

At this point, we have all the necessary ingredients to sketch a sim-
ple scheme for query approximation. Fig. 5 describes an end-to-end
workflow of a large-scale distributed approximate query process-
ing framework that computes approximate answers, estimates er-
rors and verifies its correctness. The Query (I) is first compiled into
a Logical Query Plan (II). This in turn has three distinct parts: one
that computes the approximate answer “6(S)”, another that com-
putes the error “€” and finally the component that computes the
diagnostic tests. Each logical operator is instantiated by the Phys-
ical Query Plan (III) as a DAG of tasks. These tasks execute and
communicate in parallel, and operate on a set of samples that are
distributed across multiple disks or cached in the memory. Finally,
the Data Storage Layer (IV) is responsible for efficiently distributing
these samples across machines and deciding which of these samples
to cache in memory. Notice that there are several steps that are nec-
essary in computing queries on sampled data. If we are to fulfill our
promise of interactive queries, each of these steps must be fast. In
particular, hundreds of bootstrap queries and tens of thousands of
small diagnostic queries must be performed within seconds. In this
section, we will first describe the Poissonized Resampling technique
(§5.1) that enables us to create multiple resamples efficiently by sim-
ply streaming the tuples of the original sample. Then, we present a
baseline solution based on this technique (§5.2), and finally propose
anumber of query plan optimizations (§5.3) to achieve interactivity.

5.1 Poissonized Resampling

Recall that the bootstrap (including the bootstraps performed on
the small subsamples used in the diagnostic) requires the identifica-
tion of many resampled datasets from a given sample S. To com-
pute a resample from S, we take |S| rows with replacement from
it. Equivalently, we can also view resampling as assigning a ran-
dom count in {0, 1, ...,|S|} to each row of S according to a certain
distribution, with the added constraint that the sum of counts as-
signed to all rows is exactly |S|. The distribution of counts for each
row is Poisson(1); this distribution has mean 1, and counts can
be sampled from it quickly [28]. However, the sum constraint of
having exactly |S| tuples couples the distribution of row counts and



substantially complicates the computation of resamples, especially
when samples are partitioned on multiple machines. The coupled
resample counts must be computed from a large multinomial distri-
bution and stored, using O(|S|) memory per resample. Pol and Jer-
maine showed that a Tuple Augmentation (TA) algorithm designed
to sample under this constraint not only incurred substantial pre-
processing overheads but was also in general 8 — 9x slower than the
non-bootstrapped query [30].

However, statistical theory suggests that the bootstrap does not
actually require that resamples contain exactly |S| elements, and
the constraint can simply be eliminated. The resulting approxi-
mate resampling algorithm simply assigns independent counts to
each row of S, drawn from a Poisson(1) distribution. It can
be shown that this “Poissonized” resampling algorithm is equiv-
alent to ordinary resampling except for a small random error
in the size of the resample. Poissonized resamples will contain
Z‘,i‘ Poisson (1) elements, which is very close to | S| with high prob-
ability for moderately large |S|. For example, if |S| = 10, 000, then
P(Poissonized resample size € [9500,10500]) & 0.9999994; gener-
ally, the Poissonized resample count is approximately Normal (y =
S|, o = \/|S])°. Creating resamples using Poissonized resampling is
extremely fast, embarrassingly parallel, and requires no extra mem-
ory if each tuple is immediately pipelined to downstream operators.
This forms the basis of our implementation of the bootstrap and di-
agnostics.

5.2 Baseline Solution

A simple way to implement our error estimation pipeline is to add
support for the Poissonized Resampling operator, which can be in-
voked in SQL as “TABLESAMPLE POISSONIZED (100)” As the
data is streamed through the operator, it simply assigns independent
integral weights to each row of S, drawn from a Poisson (1) distri-
bution. (The number in parentheses in the SQL is the rate parameter
for the Poisson distribution, multiplied by 100.) One weight is com-
puted for each row for every resample in which the row potentially
participates. With support for a Poissonized resampling operator in
place, the bootstrap error approximation for a query can be straight-
forwardly implemented by a simple SQL rewrite rule. For instance,
bootstrap error on the sample table “S” for a simple query of the
form “SELECT foo(col_S) FROM S” can be estimated by rewrit-
ing the query as a combination of a variety of subqueries (each of
which computes an answer on a resample) as follows:

SELECT foo(col_S), f(resample_answer) AS error
FROM (
SELECT foo(col_S) AS resample_answer
FROM S TABLESAMPLE POISSONIZED (100)
UNION ALL
SELECT foo(col_S) AS resample_answer
FROM S TABLESAMPLE POISSONIZED (100)
UNION ALL

UNION ALL
SELECT foo(col_S) AS resample_answer
FROM S TABLESAMPLE POISSONIZED (100)

Implementing error estimation or the diagnostics (for both boot-
strap and closed forms) in the query layer similarly involves either
plugging in appropriate error estimation formulas or writing a query
to execute subqueries on small samples of data and compare the es-
timated error with the true error, respectively. With this scheme, the

?Please see Chapter 3.7 of [35] for a discussion of Poissonization and
the bootstrap.

bootstrap requires execution of 100 separate subqueries, and a diag-
nostic query requires 30, 000 subqueries (we use K = 100 bootstrap
resamples, and set p = 100 and k = 3 in execution of Algorithm 1
settings). Unfortunately, the overhead introduced by executing such
a large number of subqueries compromise the interactivity of this
approach, even when leveraging distributed in-memory data pro-
cessing frameworks such as Shark [38] and Spark [39].

There are several overheads incurred by this naive solution. First,
both bootstrap and diagnostics are performing the same set of
queries over and over again on multiple samples of data. Second,
each query further gets compiled into one or more tasks. As the
number of tasks grows into thousands, the per-task overhead and
the contention caused by each task in continuously resampling the
same sample adds up substantially. This suggests that achieving
interactivity may require changes to the entire query processing
framework.

Prior work, including TA/ODM [30] and EARL [23] have pro-
posed several optimizations to reduce the repetitive work of the
bootstrap. While we build on some of these techniques, none of
them aim to provide interactive response times. For example, EARL
is built to run on top of Hadoop MapReduce, which (at least at the
time of that work) was unable to run even small queries interactively
due to scheduling overhead and I/O costs. On the other hand, Tuple
Augmentation (TA) and On-Demand Materialization (ODM) based
algorithms incur substantial overheads to create exact samples with
replacement. Next, we will show that leveraging Poissonized resam-
pling techniques to create resamples from the underlying data not
only alleviates the need for directly building on these solutions but it
is also orders of magnitude more efficient both in terms of runtime
and resource usage.

5.3 Query Plan Optimizations

Given the limitations of existing solutions, we will now demonstrate
the need for re-engineering the query processing stack (i.e., the log-
ical plan, the physical plan and the storage layer). We start with
optimizing the query plan. While some of these optimizations are
particularly well suited for parallel approximate query processing
frameworks, others are more general in nature.

5.3.1 Scan Consolidation

One of the key reasons behind the inefficiency of the bootstrap and
the diagnostics tests is the overhead in executing the same query
repeatedly on different resamples of the same data. Even if each
subquery is executed in parallel, the same input that is streamed
through each of these subqueries individually passes through the
same sets of filter, projection, and other in-path operators in the
query tree before finally reaching the aggregate operator(s). Fur-
thermore, in a parallel setting, each subquery contends for the same
set of resources—the underlying input, the metastore and the sched-
uler resources, not only making it extremely inefficient but also af-
fecting the overall throughput of the system.

To mitigate these problems, we reduce this problem to one that
requires a single scan of the original sample to execute all bootstrap
sub-queries to estimate the error and all diagnosis sub-queries to
verify the error accuracy. To achieve this goal, we first optimize the
logical plan by extending the simple Poissonized Resampling oper-
ator in §5.2 to augment the tuple simultaneously with multiple sets
of resampling weights— each corresponding to a resample that may
either be required to estimate the error using bootstrap or to verify
the accuracy of estimation using the diagnostics. More specifically,
as shown in Fig. 6(a), to estimate sampling error using bootstrap,
we augment each tuple in sample S by associating a set of 100 in-
dependent weights S,, ..., Si100, €ach drawn from a Poisson (1) dis-
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Figure 6: Logical Query Plan Optimizations

tribution to create 100 resamples of S. For the diagnostics, we first
logically partition™ the sample S into multiple sets of 50 MB, 100
MB and 200 MB and then associate the weights Da,, ..., Daioo; Dps»
vois Dproo and D¢y, ..., Deoo to each row in order to create 100 re-
samples for each of these three sets. Overall, we use 100 instances
of these three sets for accurate diagnosis. Executing the error esti-
mation and diagnostic queries in a single pass further enables us to
leverage a lot of past work on efficiently scheduling multiple queries
by sharing a single cursor to scan similar sets of data [10, 18, 37].
These techniques also warrant a small number of other straight-
forward performance optimizations to the database’s execution en-
gine by modifying all pre-existing aggregate functions to directly
operate on weighted data, which alleviates the need for duplicat-
ing the tuples before they were streamed into the aggregates. Last
but not least, we also add two more operators to our database’s log-
ical query plan- the bootstrap operator and the diagnostic operator.
Both of these operators expect a series of point estimates obtained
by running the query on multiple resamples of underlying data and
estimate the bootstrap error and estimation accuracy, respectively.

5.3.2  Operator Pushdown

Ideally, as shown in Fig. 6(b) (left), the Poissonized resampling op-
erator should be inserted immediately after the TABLESCAN oper-
ator in the query graph and the bootstrap and diagnostic operators
should be inserted after the final set of aggregates. However, this

'® Please note that the sample S is completely shuffled in the cluster
and any subset of S is also a random sample.

results in wasting resources on unnecessarily maintaining weights
of tuples that may be filtered upstream before reaching the aggre-
gates. Therefore, to further optimize the query plan, we added a
logical plan rewriter that rewrites the logical query plan during the
optimization phase. Rewriting the query plan involves two steps.
First, we find the longest set of consecutive pass-through' operators
in the query graph. Second, we insert the custom Poissonized re-
sampling operator right before the first non pass-through operator in
the query graph. This procedure is illustrated in Fig. 6(b), wherein
we insert the Poissonized resampling operator between stage 2 and 3.
The subsequent aggregate operator(s) is(are) modified to compute a
set of resample aggregates by appropriately scaling the coresponding
aggregation column with the weights associated with every tuple.
These set of resample aggregates are then streamed into the boot-
strap and diagnostic operators.

We note that while the Poissonized resampling operator temporar-
ily increases the overall amount of intermediate data (by adding
multiple columns to maintain resample scale factors), more often
than not, the actual data used by the Poissonized resampling operator
(after the series of filters, projections and scans) is just a tiny frac-
tion of the input sample size. This results in overall error estimation
overhead being reduced by several orders of magnitude using the
bootstrap.

6. PERFORMANCE TRADEOFFS

We implemented our solution in BlinkDB [8, 9], an open source
distributed AQP framework. BlinkDB is built on top of Shark [38],
a query processing framework, which in turn is built on top of
Spark [39], an execution engine. Shark supports caching inputs and
intermediate data in fault tolerant data structures called RDDs (Re-
silient Distributed Datasets). BlinkDB leverages Spark and Shark to
effectively cache samples in memory and to allow users to pose SQL-
like aggregation queries (with response time or error constraints)
over the underlying data, respectively. Queries over multiple ter-
abytes of data can hence be answered in seconds, accompanied by
meaningful error bars bracketing the answer that would be obtained
if the query ran instead on the full data. The basic approach taken
by BlinkDB is exactly the same as described above—it precomputes
and maintains a carefully chosen collection of samples of input data,
selects the best sample(s) at runtime for answering each query, and
provides meaningful error bounds using statistical sampling theory.
We have implemented our solution in BlinkDB version o.1.1 [2].
Furthermore, we have also helped in successfully integrating the
same set of techniques in Facebook’s Presto [5], another well-known
open-source distributed SQL query engine.

As described in §5, we first added the Poissonized Sampling opera-
tor, the bootstrap operator, and the diagnostics operator in BlinkDB,
then modified the aggregate functions to work on weighted tuples.
Finally, we implemented the logical plan rewriter to optimize the
query plan for error estimation and diagnostics. While the afore-
mentioned query plan optimizations brought the end-to-end query
latency to tens of seconds, to achieve interactivity, we need a fine
grain control on 3 key aspects of the physical plan- the query’s de-
gree of parallelism, per-task data locality, and straggler mitigation.

6.1 Degree of Parallelism

BlinkDB maintains a variety of disjoint random samples of the un-
derlying data that is cached across a wide range of machines. These

"'We loosely define pass-through as those set of operators that do not
change the statistical properties of the set of columns that are being
finally aggregated. These operators are relatively simple to identify
during the query planning and analysis phase [11] and consist of, but
are not limited to scans, filters, projections, etc.



samples are randomly shuffled across the cluster and any subset of a
particular sample is a random sample as well. Given that the ability
to execute the query on any random sample of data (on any sub-
set of machines) makes the implementation of both the error esti-
mation and diagnostic procedures embarrassingly parallel (except
the aggregation step at the end), parallelizing the logical query plan
to run on many machines (operating on a fraction of data) signifi-
cantly speeds up end-to-end response times. However, given the fi-
nal aggregation step, arbitrarily increasing the parallelism often in-
troduces an extra overhead, even in an interactive query process-
ing framework like BlinkDB. A large number of tasks implies addi-
tional per-task overhead costs, increased many-to-one communica-
tion overhead during the final aggregation phase, and a higher prob-
ability of stragglers. Striking the right balance between the degree of
parallelism and the overall system throughput is primarily a prop-
erty of the underlying cluster configuration and the query workload.
We will revisit this trade-off in §7.

6.2 Per-Task Data Locality

While executing a query on a sample, we ensure that a large por-
tion of the samples are cached in cluster memory, using BlinkDB’s
caching facilities. However we observed empirically that using all
the available RAM for caching inputs is not a good idea. In general,
given that the total RAM in a cluster is limited, there is a tradeoft
between caching a fraction of input data versus caching intermedi-
ate data during the query’s execution. Caching the input invariably
results in faster scan times, but it decreases the amount of per-slot
memory that is available to the query during execution. While this
is once again a property of the underlying cluster configuration and
the query workload, we observed that caching a fixed fraction of
samples and allotting a bigger portion of memory for caching inter-
mediate data during the query execution results in the best average
query response times. We will revisit this trade-off in §7.

6.3 Straggler Mitigation

With a fine grained control over the degree of parallelism and per-
task locality, avoiding straggling tasks during query execution re-
sults in further improvements in query runtime. In order to reduce
the probability of a handful of straggling tasks slowing down the
entire query, we always spawn 10% more tasks on identical random
samples of underlying data on a different set of machines and, as a
result, do not wait for the last 10% tasks to finish. Straggler mitiga-
tion does not always result in end-to-end speedups and may even, in
theory, introduce bias in error estimation when long tasks are sys-
tematically different than short ones [29]. However, in our exper-
iments we observed that straggler mitigation speeds up queries by
hundreds of milliseconds and causes no deterioration in the quality
of our results.

7. EVALUATION

We evaluated our performance on two different sets of 100 real-
world Apache Hive queries from the production clusters at Conviva
Inc. [4]. The queries accessed a dataset of size 17 TB stored across
100 Amazon EC2 mu1.large instances (each with 4 ECUs" (EC2 Com-
pute Units), 7.5 GB of RAM, and 840 GB of disk). The cluster was
configured to utilize 75 TB of distributed disk storage and 600 GB
of distributed RAM cache. The two query sets consists of:

e Query Set 1 (QSet-1): 100 queries for which error bars can
be calculated using closed forms (i.e., those with simple AVG,
COUNT, SUM, STDEV, and VARIANCE aggregates).

?Each ECU is considered to be equivalent of a 1.0-1.2 GHz Opteron
or Xeon processor.

e Query Set 2 (QSet-2): 100 queries queries for which error
bars could only be approximated using the bootstrap (i.e.,
those with multiple aggregate operators, nested subqueries or
with User Defined Functions).

7.1 Baseline Results

Fig. 7(a) and Fig. 7(b) plot the end-to-end response times for ex-
ecuting the query on a sample, estimating the error and running
the diagnostics using the naive implementation described in §5.2
on QSet-1 and QSet-2, respectively. Every query in these QSets
is executed with a 10% error bound on a cached random sample of
at most 20 GB in size from the underlying 17 TB of data. Given that
each of the 3 steps—the query execution on the sample, the error es-
timation and running the diagnosis—happens in parallel, for each
query we plot the Query Response Time (i.e., the time it takes to exe-
cute the query on a sample), the Error Estimation Overhead (i.e., the
additional overhead of estimating bootstrap or closed form error),
and the Diagnostics Overhead (i.e., the additional overhead of run-
ning the diagnosis) separately. These results clearly highlight that
simply rewriting the queries to implement error estimation and di-
agnostics on even relatively small sample sizes typically takes several
minutes to run (and more importantly costs 100x to 1000x more re-
sources), making it too slow for interactivity and hugely ineflicient.
Next, we will revisit our optimizations from Sections §5.3 and $6,
and demonstrating their individual speedups in response times with
respect to our baseline solution.

7.2 Query Plan Optimizations

As expected, some of our biggest reductions in end-to-end query
response times come from Scan Consolidation and Operator Push-
down. Fig. 8(a) and Fig. 8(b) show the cumulative distribution func-
tion of speedups yielded by query plan optimization techniques
(Scan Consolidation and Operator Pushdown) for error estimation
and diagnostics (larger overhead ratios indicate greater speedups).
Individually, Fig. 8(a) and Fig. 8(b) show the speedups associated
with QSet-1 & QSet-2 respectively. These speedups are calculated
with respect to the baseline established in Fig. 7(a) and Fig. 7(b) and
demonstrate improvements of 1—2x and 5—20x (for error estimation
and diagnostics respectively) in QSet-1, and 20-60x and 20-100x
(for error estimation and diagnostics respectively) in QSet-2.

7.3 Performance Tuning

With the query plan optimizations in place, we will next show the
benefits of tuning the underlying physical execution plan by varying
the degree of parallelism and input cache sizes. As we explain in §6,
we observed that striking the right balance between the degree of
parallelism and the overall system throughput is primarily a prop-
erty of the underlying cluster configuration and the query workload.
We verified this observation empirically by varying the amount of
maximum parallelism for each query. As shown in Fig. 8(c), in our
experiments, we observed that both bootstrap-based error estima-
tion and the diagnostic procedure were most efficient when exe-
cuted on up to 20 machines. Increasing the degree of parallelism
may actually lead to worse performance as the task scheduling and
communication overheads offsets the parallelism gains. Again, note
that the optimal degree of parallelism we report here is an artifact
of our query load and the sample sizes we picked for our diagnos-
tic procedure. Choosing the degree of parallelism automatically is a
topic of future work.

Similarly, we observed that caching the entire set of input samples
is not always optimal. As we explain in §6, given that the total RAM
in a cluster is limited, there is a tradeoff between caching a fraction
of input data versus intermediate data during query execution. In
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Figure 7: 7(a) and 7(b) show the naive end-to-end response times and the individual overheads associated with query execution, error
estimation, and diagnostics for QSet-1 (i.e., set of 100 queries which can be approximated using closed-forms) and QSet-2 (i.e., set of
100 queries that can only be approximated using bootstrap), respectively. Each set of bars represents a single query execution with a 10%
error bound.
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Figure 8: Fig. 8(a) and Fig. 8(b) show the cumulative distribution function of speedups yielded by query plan optimizations (i.e., Scan
Consolidation and Sampling Operator Pushdown) for error estimation and diagnostics with respect to the baseline defined in §5.2. Simi-
larly, Fig. 8(e) and Fig. 8(f) show the speedups yielded by a fine grained control over the physical plan (i.e., bounding the query’s degree
of parallelism, size of input caches, and mitigating stragglers) for error estimation and diagnostics with respect to the baseline defined
in §5.3. Fig. 8(c) and Fig. 8(d) demonstrate the trade-offs between the bootstrap-based error estimation/diagnostic techniques and the
number of machines or size of the input cache, respectively (averaged over all the queries in QSet-1 and QSet-2 with vertical bars on
each point denoting o0.01 and 0.99 quantiles).



3 ODiagnostics Overhead B Error Estimation Overhead ®Query Execution Time

m
2 25
o
(o)
€ 1.5 1HHRHERHEHEHEHHRHER eI RRRaR HHHHHEIHAR RO RO
[
C
o
g 05 b
o
0
Queries
(a) QSet-1
. 3 ODiagnostics Overhead B Error Estimation Overhead ®Query Execution Time
[2]
2 25
[
(o]
=
c
o
§ 05 -
o
0
Queries
(b) QSet-2

Figure 9: Fig. 9(a) and Fig. 9(b) show the optimized end-to-end response times and the individual overheads associated with query
execution, error estimation, and diagnostics for QSet-1 (i.e., set of 100 queries which can be approximated using closed-forms) and
QSet-2 (i.e., set of 100 queries that can only be approximated using bootstrap), respectively. Each set of bars represents a single query

execution with a 10% error bound.

our experiments we observed that caching a fixed fraction of sam-
ples and allotting a bigger portion of memory for query execution
results in the best average query response times. Fig. 8(d) shows the
tradeoff graph with the percentage of samples cached on the x-axis
and the query latencies on the y-axis. In our case, we achieve the best
end-to-end response times when 30 — 40% of the total inputs were
cached, accounting for roughly 180 — 240 GB of aggregate RAM.
Fig. 8(e) and Fig. 8(f) show the cumulative distribution function
of the speedup for error estimation and diagnostics obtained by (i)
tuning the degree of parallelism, (ii) the fraction of samples being
cached (as discussed above), and, in addition, (iii) increasing the
number of sub-queries by 10% to account for straggler mitigation.
Specifically, 8(e) and 8(f) show the speedups associated with QSet-1
(i.e., set of 100 queries that can be approximated using closed-forms)
and QSet-2 (i.e, set of 100 queries that can only be approximated
using bootstrap), respectively. Note that the baseline for these ex-
periments is the implementation of BlinkDB with the query plan
optimizations described in §5.3, and not the naive implementation.

7.4 Putting it all Together

With all the optimizations in place, Fig. 9(a) and Fig. 9(b) show the
per-query overheads of error estimation and diagnostics on our two
query sets QSet-1 and QSet-2, respectively. Note that in compari-
son to Fig. 7(a) and Fig. 7(b), we have been able to improve the ex-
ecution times by 10 — 200x, and achieve end-to-end response times
of a few seconds, thus effectively providing interactivity.

8. CONCLUSION

Sampling produces faster response times, but requires error estima-
tion. Error estimation can be performed via the bootstrap or closed
forms. Both techniques work often enough that sampling is worth-
while, but they fail often enough that a diagnostic is required. In
this paper, we first generalized the diagnostic previously applied to
the bootstrap to other error estimation techniques, such as closed
forms, and demonstrated that it can identify most failure cases. For

these techniques to be useful for interactive approximate query pro-
cessing, we require each of the aforementioned steps to be extremely
fast. Toward this end, this paper proposes a series of optimizations
at multiple layers of the query processing stack. With fast error esti-
mation and diagnosis of error estimation failure, significantly faster
response times are possible, making a qualitative difference in the
experience of end users.
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APPENDIX

A.

DIAGNOSTIC ALGORITHM

Algorithm 1 is the diagnostic of Kleiner et al [22], specialized to query ap-
proximation. We provide it here for completeness. The algorithm requires a
large number of parameters. In our experiments, we have used settings sim-
ilar to those suggested by Kleiner et al.: p = 100, k = 3,¢; = 0.2, ¢, = 0.2,
c; = 0.5, and § = 0.95 on subsamples whose rows have total size 50 MB,
100MB and 200MB.

Input: S = (S,, ..., S»): a sample of size n from D

0: the query function

a: the desired coverage level for confidence intervals

&: a function that produces confidence interval estimates given

a sample, a query function, and a coverage level, e.g. the

bootstrap

by, ..., by: an increasing sequence of k subsample sizes

p: the number of simulated subsamples from D at each sample

size

C1, G2, ¢5: three different notions of acceptable levels of relative

deviation of estimated error from true error

p: the minimum proportion of subsamples on which we

require error estimation to be accurate

Output: a boolean indicating whether confidence interval

estimation works well for this query

// Compute the best estimate we can find for
0(D):

t<0(S)

for i < 1...k do

(S",S™,...,S) « any partition of S into size-b;

subsamples

// Compute the true confidence interval for
subsample size b;:

(fl'lx vees fip) <~ map(Si', 9)

xi «the smallest symmetric interval around 0(S) that

covers ap elements of fie

// Compute the error estimate for each
subsample of size b;. (Note that when E
is the bootstrap, this step involves
computing 6 on many bootstrap resamples
of each S”.)

()2',‘1, veey 92,-1,) <~ map(Si', ld f(s) 6, (x))

// Summarize the accuracy of the error
estimates Xjo with a few statistics:
Magnitude of average deviation from x;
(normalized by x;), spread (normalized by
xi), and proportion acceptably close to
Xi:

A; < |mean(ji.)—x[|

stddev(%;q)

Xi

g <

end

// Check several acceptance criteria for the
Xij. Average deviations and spread must be
decreasing or small, and for the largest
sample size b; most of the X;, must be close
to Xxi:

for i < 2..k do
AverageDeviationAcceptable, < (A; < A;-, ORA; < ¢,)
SpreadAcceptable, < (0; < 0;-; OR 0 < ¢,)

end

FinalProportionAcceptable < (7 > p)

return true if AverageDeviationAcceptable, AND

SpreadAcceptable; for all i AND FinalProportionAcceptable,

and false otherwise

Algorithm 1: The diagnostic algorithm of Kleiner et al. We use
functional notation (e.g., “map”) to emphasize opportunities for
parallelism.



