UNIVERSITY OF CALIFORNIA
Department of Electrical Engineering
and Computer Sciences
Computer Science Division

Programming Contest P. N. Hilfinger
Fall 1994

Programming Problems

To set up your account, execute
source “ctest/contest/bin/setup

inall shellsthat you areusing. (Thisisfor those of you using the C-shell. Otherswill haveto examine
thisfile and do the equivalent for their shells.)

You have 5 hoursin which to solve as many of the attached eight problems as possible. Put each
complete solutionintoasingle N. c file (for C) or N. Cfile (for C++), where N isthe number of the
problem. Each program must reside entirely in asinglefile. Each file should start with the line

#i ncl ude "contest. h"

and must contain no other #i ncl ude directives. Upon completion, each program must terminate by
callingexi t (0).

Aside from files in the standard system libraries and those we supply, you may not use any pre-
existing computer-readablefilesto supply source or object code; you must typein everything yourself.
The standard system libraries do not include the gcc classlibrary. You may not use utilities such as
yacc, bi son, | ex, or f | ex to produce programs. Your programs may not create other processes
(aswiththesyst em popen, f or k, or exec seriesof calls). You may use any inanimate reference
materials you desire, but no people. You can be disqualified for breaking these rules.

When you have a solution to problem number N that you wish to submit, use the command

submt N

from the directory containing N. c or N. C. Before actually submitting your program, submi t will
first compile it and run it on one sample input file. No submission that is sent after the end of the
contest will count. You should be aware that subni t takes some time before it actually sends a
program. In an emergency, you can use

submt -f N



Programming Problems 2

which submits problem N without any checks.
You will be penalized for incorrect submissions that get past the smple test administered by
submni t, so besureto test your programs. All testswill use the compilation command

contest-gcc N
followed by one or more execution tests of the form (Bourne shell):
N < test-input-file 2> junk-file

The output of each input fileis then compared with a standard output file. Inthis comparison, leading
and trailing blanks are ignored and sequences of blanks are compressed to single blanks. Otherwise,
the comparison is literal; be sure to follow the output formats exactly. Make sure that the last line
of output ends with a newline. Your program must not send any output to st der r; the temporary
file junk-file must be empty at the end of execution. Each test is subject to a time limit of about
15 seconds. You will be advised by mail whether your submissions pass.

The command cont est-gcc [-g] N, where N isthe number of aproblem, is available to
you for devel oping and testing your solutions (as usual, the optional - g isfor debugging information).
It isequivalent to

gcc -Wall -o N -O[-g] -lour-includes N.[cC] our-library -1g++ -Im

The our-includes directory containscont est . h, which also suppliesthe standard header files. The
our-library file contains an additional runtime library routine that you may use, which are described
below.

All input will be placed in st di n. You may assume that the input conforms to any restrictions
in the problem statement; you need not check the input for correctness. Consequently, you are freeto
use scanf toread in numbers and strings.

Scoring.  Scoring will be according to the ACM Contest Rules. You will be ranked by the number
of problems solved. Where two or more contestants complete the same number of problems, they
will be ranked by the total time required for the problems solved. The total time is defined as the
sum of the time consumed for each of the problems solved. The time consumed on a problem is the
time elapsed between the start of the contest and successful submission, plus 20 minutes for each
unsuccessful submission, and minus the time spent judging your entries. Unsuccessful submissions
of problemsthat are not solved do not count. As amatter of strategy, you can derive from these rules
that it is best to work on the problemsin order of increasing expected completion time.

Protests. Should you disagree with the rejection of one of your problems, first prepare a file
containing the explanation for your protest, andthen usethepr ot est command (without arguments).
It will ask you for the problem number, the submission number (submission 1 isyour first submission
of apraoblem, 2 the second, etc.), and the name of the file containing your explanation. Do not protest
without first checking carefully; groundless protests will be result in a 5-minute penalty (see Scoring
above).



Programming Problems 3

Terminology.

Theterm free-forminput indicates that input numbers, words, or tokens are separated

from each other by arbitrary whitespace characters. By standard C/UNIX convention, a whitespace
character is a space, tab, return, newline, formfeed, or vertical tab character.

Additional library routine. Thefollowing routineis available for you to call.

extern int linSolve(const double Al], const double b[], double Xx[],

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

int N, int C;
Treats A as an N-by-N matrix, and b and x as N-el enment colum */
vectors. Normally sets x to the solution of Ax=b and returns 0. */
If any O pivots are encountered (indicating a singular system */
returns 1 and | eaves x undefined (in any case, A and b are */
unchanged). The vector x may not overlap A or b. */

The parameter C>=N controls where the rows of A are assuned */
to be stored. The kth row of A (0<=k<N) is stored in elenents */
A[ kC] through AIKC + N - 1]. This allows one to declare the */
actual paraneter for A as, e.g., */

doubl e Q 100][ 100]; */
and then store a 10x10 matrix in the first 10 el enents of the */
first 10 rows of Q (so N=10, C=100), or as */

doubl e R 200]; */
and store a 10x10 matrix in the first 100 el enents of R (so */
N=10, C=10). */



Programming Problems 4

1. Thegamexr obot s isplayed onarectangular grid of squares. At any time, each squareiseither
unoccupied, occupied by a robot, occupied by the human player, or occupied by a pile of robotic
debris. On each turn, the human player may either stay put or move to an adjacent square in any
direction, aslong asthat square is unoccupied and is not adjacent to a square containing arobot. After
the player moves, each robot moves to the square adjacent to it that minimizesthat robot’s horizontal
and vertical distance to the player. If multiple robots move to the same square, or if arobot movesto
a square containing debris, then all robots moving to that square are destroyed, leaving debris.

Theserulesmakeit possiblefor thereto be no square to which a player can legally movein histurn
(including the square he is on). When this happens, the player can teleport to a random unoccupied
square, losing if he lands next to a robot. To maximize the chances of winning, you hit upon the
“greedy” strategy of trying to move so as to maximize the fraction of resulting unoccupied squares
that are not next to any robot (after the robots move). In this problem, you are to read in a board
containing a configuration in which it is the player’s turn to move. You must determine the move
(“stay put” is a move) that implements this strategy, and display the board that results after you and
then the robots move.

Theinput consists of asequence of configurations. Each configuration beginswith two integersin
free form, giving the width, 7/, and height, H, of aboard (in number of squares). These are followed
by H strings, each W characterslong, separated by white space. Each string gives the contents of the
squares on one row of the board, starting with the top (“northernmost™) row. A ‘-’ character denotes
an unoccupied square; ‘P’ denotes the player (there is exactly one per board); ‘R denotes a robot;
and ‘D denotes debris. Therewill alwaysbe at least one unoccupied square.

The output should consist of a sequence of reports displaying the number of the configuration (0
for the first, 1 for the second, etc.), echoing the board, and then showing the board after an optimal
move by the player. If the player has no move, the program should print

The pl ayer has no nove.

in lieu of showing this second board. When more than one moveis optimal, the player should prefer
first to stay put (if that is an optimal move), then to move north, then to move northeast, and so
forth clockwise around the compass. Put ablank line after each configuration report, as shownin the
example.



Programming Problems

For example, given the following inputs, the desired outputs are as shown.

Input

Output

More Output

Configuration O.

Best result:

Configuration 1.
----RRR
---P-RR-

Best result:

The pl ayer has no

nove.

Configuration 3.

Best result:




Programming Problems 6

2. Thisproblem concernsarestricted form of the predicate calculus (logic with “for al” and “there
exists’). In thisrestricted language, formulas are written in postfix form: operandsfirst, followed by
an operator. Each formulais astring of

e \ariables, written as lower-case letters a—z.

e Therelational operators‘>’ (greater than), ‘<’ (lessthan), and ‘=" (equals).

Thelogical operators*& (and), ‘| * (or), ‘" (implies), and ™’ (not).

The constants, optionally signed integer numerals.

Variables are implicitly universally quantified; that is, a formulais true iff it is true for all values of
any variablesiniit.

For example the formula

o> < _
denotes the true assertion “7 > j impliesj < 7 for al s and j." (Inlogic, A implies B iff A isfalseor
B istrue). Therelational operators must be applied to variables and integer constants only; they yield
true or false. The logical operators must be applied to logical values only. The formulamust yield a
logical value. You may assume all formulas obey thisrule.

You areto write a program to read formulas and print whether each istrue or false. Each formula
is on a separate line, preceded by two integer constants, 7. and U/, which indicate the lower and upper
bounds over which the variables may range. You may assume . < U. Theformulafollows L and U,
with itsindividual operators and operands separated by one or more blanks.

The output should echo the input and then say whether the formulaistrue, in the format shownin
the examples. Sample input and output follows.

INPUT:
-11i )] >kj < &ki < _
0O1ij="ki="kj="&&01=_
02ij="%ki="kj="&&01=_

OUTPUT:
i j >kj <&ki < _istruein[-1..1]
i j =" ki ="kj ="7&&01=_1istruein[0..1]
i j =" ki ="kj ="&&01=_1is falsein[0..2]



Programming Problems 7

3. A set of rectangular tiles are laid upon a rectangular floor, all with one edge parallel to one of
the walls. The tilesmay overlap. You are to write a program that determines how much of the floor
is covered, given the sizes and positions of the rectangles. The problem, naturally, isin making sure
that you count the areas where tiles overlap only once. For example, in the figure below, six tiles
cover 505 square units of area, while the total area of thetilesis 582 square units.

30

25

20-

15-

10-

o+
0 5 10 15 20 25 30 35 40

The input to your program will consist of a sequence of sets of data in free format. Each set
consists of two positive integers I and W, respectively giving the length and width of the floor,
followed by quadruples of non-negative integers ;, W;, z;, and y;, each giving the length and width
(L;, W;) of arectangle, and the position of its lower-left corner (z;, y;). These numbers satisfy the
following constraints.

O<a; <L-L;, 0Ly, <W-W,;, L;,W;>0.

A quadruple of all 0's marksthe end of a set of data.
For each set of data, the output isto consist of a single message of the form

“Set k covers M square units”

where £ isthe number of this set of data (numbering from 0), and M is the amount of floor covered.
Sample input and the resulting output follow.



Programming Problems

Input

Output

40 30
1515513525 20
10500

4 3814

20 10 15 15

55 305

00O0O

01

o ororol gl
OO ~O S~
[@N) No i) Ne o)
[oNeoNoNoNe

Set 0 covers 505 square units
Set 1 covers 50 square units



Programming Problems 9

4. The set of merges of two strings of length N isthe set of all strings whose ith character for all
0 < ¢ < N isthe ith character of one or the other string. You are to write a program that reads in
pairs of strings of equal length and lists the elements of the set of merges, without duplicates.

The input will consist of a sequence of strings of non-whitespace, printable characters, separated
by whitespace. You may assume the strings are at most 128 characters long. The output is to echo
each two strings and then list the members of the set of merges in Iexicographic order using the
standard ASCII character ordering, without duplicates, in the format shown following.

Input Output
:ZfS: Set O0: "lust" and "left"
. | ef t
graft brain | est
| uft
| ust

Set 1: "graft" and "brain"
brafn
braft
brain
brai t
grafn
graft
grain
grait




Programming Problems

10

5. [Dueto E. W. Dijkstra] Consider decimal numerals containing only the digits 1-3. A numera
is considered “good” if no two adjacent non-empty substrings of it are equal; otherwise it is “bad.”
Hence, thenumerals‘1’, *12', and ‘1213 are good, while‘11’, *32121’, and ‘121321312 are bad.
You are to write a program that, given » > 0, finds the smallest good »-digit numeral. The input
consists of a sequence of positiveintegers. For each of theseintegers, », the output isto containaline

of theform
The smal | est good nuneral of length n is s.
where s isthe answer. For example,
Input Output

14 The smal | est good nuneral of length 1 is 1.

7 The smal | est good nuneral of length 4 is 1213.

9 The smal | est good nuneral of length 7 is 1213121.

The smal | est good nuneral of length 9 is 121312313.



Programming Problems 11

6. [Dueto Geoff Pike] Anant wandersabout an anthill. At each room, it choosesrandomly towhich
room it will wander next (including back to the one it just came from). Given the room at which it
starts, we can ask how many roomsit will visit (on average) before reaching another given room.

The input for this problem will consist of sets of input in free format. Each set consists of a
positive number N, the number of rooms, followed by alist of connections between rooms. Each
connection is denoted by a pair of positive numbers between 1 and N, identifying the rooms at the
ends of that connection. A pair ‘00" endsthelist. There may be self-loops—connectionsthat proceed
from an room back to that room.

Room 1 is the starting point for the ant, and room N is the ending point. The ant follows
connections from room to room, choosing among the possible connections to take next room with
equal probability (the connection it just took being one of the possibilities), until it (first) reaches
room N. The length of its path from start to finish is the number of connectionsit follows. (Asa
result of these definitions, the average length of the ant’s path when N = 1is0.) You may assume
that V isreachable from all other rooms.

For each set of input, your program isto print out the number of the set (starting at 0) followed by
amessage of theform

Average path length = ddd.dd
(that is, display the result rounded to two decimal places). Use the format given in the following
examples.



Programming Problems

Input Output
2 Set 0.
1200 Average path |ength .00
2 111200
3 Set 1.
12 230 Average path |ength .00
0
1 Set 2.
1100 Average path |ength .00
1 00
3 1211222300 Set 3.
Average path | ength .00
Set 4.
Average path |ength .00
Set 5.
Average path |ength .00

12



Programming Problems 13

7. There are numerous applicationsthese days for modular arithmetic involving very large integers.
In this problem, we consider one particular modular arithmetic operation—the calculation of the
remainder of « divided by M for « > 0 an arbitrarily large integer and 0 < M < 2%,

The input will consist of sets of two positive integer numerals (¢ and M in that order) separated
by whitespace. In each case, M < 2% (so that M fitsin an unsi gned | ong i nt quantity,) but
thereisno limit on « or b. For each set, the output consists of an echo of the input and the result, in
the format shown below. You may not usegcc’s “long long” integer datatypesfor this problem.

Input:

48 12

10000000000 101
1234567890987654321
3000000000

Output:

48
0 nod 12

10000000000
100 nod 101

1234567890987654321
987654321 nod 3000000000



Programming Problems 14

8. A robot wanders through an obstacle course. Each time it encounters an obstacle, it makes a 90°
left turn. You are to write a program to determine its path up to the point where it either reaches a
designated destination or beginsto repest its path.

In this problem, we will approximate the course with a rectangular grid of squares. Each square
may either be empty, be filled with an obstacle, or be a destination square (there may be more than
one). The robot begins at a given empty square, moving in one of the four directions parallel to aside
of therectangle. At each step, therobot either movesto the adjacent squarein thedirectionitismoving
(or off the board) if there is no obstaclein the way, or changesits direction 90° counter-clockwise. A
path ends when the robot reaches a destination square, falls off the edge of the region, or reaches a
configuration it has already encountered (a configuration is a combination of position and direction).

The input will consist of sets of data. Each set will consist of two integers, I and W, giving
the length and width of the rectangular region (the length is displayed going left to right, the width
goes up and down the page), followed by W rows of L characters (uppermost first), with the rows
separated from each other by whitespace. The possible charactersin each row are ‘- ' for an empty
square, ‘X' for an obstacle, ‘D for a destination, or one of the characters*<’, ‘>, "', or 'V for a
square containing a robot moving (respectively) left, right, up or down. There will be exactly one
robot on the board. You may assumeO < L < 100and 0 < W < 100. Within these constraints there
may be any number of obstacles and destinations.

The output isto consist of adepiction of the board that was input with the robot’s path other than
the final square indicated with periods. In addition, if the robot has not fallen off the board, its final
position is marked with *<’, *>", ", or ‘V' to indicate its final direction. See the examples on the
next page.



Programming Problems

Output

Input

10 8

X------ XX

X--DD° ----

--------- X

- XX-- - - X
XIXXXXXXXX

10 8

XXKKKK= === e - -
X--DO--X ---------
D, CEEEE X
09,0,0.9.9,:9.0.9.9.4

4 3

XXXX

X>-X

XXXX

Board O:

Board 2:
XXXX
xX>. X
XXXX

15



