
UNIVERSITY OF CALIFORNIA
Department of Electrical Engineering

and Computer Sciences
Computer Science Division

Programming Contest P. N. Hilfinger

Fall 2008

2008 Programming Problems

Please make sure your electronic registration is up to date, and that it contains the correct
account you are going to be using to submit solutions (we connect names with accounts
using the registration data).

To set up your account, execute

source ~ctest/bin/setup

in all shells that you are using. (This is for those of you using csh-like shells. Those using
bash should instead type

source ~ctest/bin/setup.bash

Others will have to examine this file and do the equivalent for their shells.)
This booklet should contain eight problems on 19 pages. You have 5 hours in which

to solve as many of them as possible. Put each complete C solution into a file N.c,
each complete C++ solution into a file N.cc, and each complete Java program into a file
N.java, where N is the number of the problem. Each program must reside entirely in a
single file. In Java, the class containing the main program for problem N must be named
PN (yes, it is OK to have a Java source file whose base name consists of a number, even
though it doesn’t match the name of the class). Do not make class PN public, or the Java
compiler will complain. Each C/C++ file should start with the line

#include "contest.h"

and must contain no other #include directives, except as indicated below. Upon comple-
tion, each program must terminate by calling exit(0) (or System.exit(0) in Java).

Aside from files in the standard system libraries and those we supply, you may not use
any pre-existing computer-readable files to supply source or object code; you must type
in everything yourself. Selected portions of the standard g++ class library are included
among of the standard libraries you may use: specifically, the headers string, vector,
iostream, iomanip, sstream, fstream, map, and algorithms. Likewise, you can use the
standard C I/O libraries (in either C or C++), and the math library (header math.h). In
Java, you may use the standard packages java.lang, java.io, java.text, java.math,

1

2008 Programming Problems 2

and java.util and their subpackages. You may not use utilities such as yacc, bison, lex,
or flex to produce programs. Your programs may not create other processes (as with the
system, popen, fork, or exec series of calls or their Java-library equivalents). You may
use any inanimate reference materials you desire, but no people. You can be disqualified
for breaking these rules.

This year, for the first time, we have two ways to submit solutions: by a command-line
program, and over the web. Submit from the command line on the instructional machines.
When you have a solution to problem number N that you wish to submit, use the command

submit N

from the directory containing N.c, N.cc, or N.java. Before actually submitting your
program, submit will first compile it and run it on one sample input file. No submission
that is sent after the end of the contest will count. You should be aware that submit takes
some time before it actually sends a program. In an emergency, you can use

submit -f N

which submits problem N without compiling or running it.
To submit from the web, go to our contest announcement page:

http://inst.cs.berkeley.edu/~ctest/contest/index.html

and click on the “web interface” link. You will go to a page from which you can upload
and submit files from your local computer (at home or in the labs). On this page, you can
also find out your score, and look at error logs from failed submissions. One problem with
this interface: at the moment it does not, unlike submit, pre-test your submission. At the
moment, you can only do this on the instructional machines.

You will be penalized for incorrect submissions that get past the simple test admin-
istered by submit, so be sure to test your programs (if you get a message from submit

saying that it failed, you will not be penalized). All tests (for any language) will use the
compilation command

contest-gcc N

followed by one or more execution tests of the form (Bourne shell):

./N < test-input-file > test-output-file 2> junk-file

which sends normal output to test-output-file and error output to junk-file. The output
from running each input file is then compared with a standard output file, or tested by a
program in cases where the output is not unique. In this comparison, leading and trailing
blanks are ignored and sequences of blanks are compressed to single blanks. Otherwise,
the comparison is literal; be sure to follow the output formats exactly. It will do no good
to argue about how trivially your program’s output differs from what is expected; you’d be
arguing with a program. Make sure that the last line of output ends with a newline. Your
program must not send any output to stderr; that is, the temporary file junk-file must be

2008 Programming Problems 3

empty at the end of execution. Each test is subject to a time limit of about 45 seconds.
You will be advised by mail whether your submissions pass (use the imail account at

https://imail.eecs.berkeley.edu

and log in with the account you registered to use for the contest.) You can also view this
information using the web interface described above.

In the actual ACM contests, you will not be given nearly as much information about
errors in your submissions as you receive here. Indeed, it may occur to you to simply
take the results you get back from our automated judge and rewrite your program to print
them out verbatim when your program receives the corresponding input. Be warned that
I will feel free to fail any submission in which I find this sort of hanky-panky going on
(retroactively, if need be).

The command contest-gcc N , where N is the number of a problem, is available to
you for developing and testing your solutions. For C and C++ programs, it is roughly
equivalent to

gcc -Wall -o N -O2 -g -Iour-includes N.* -lm

For Java programs, it is equivalent to

javac -g N.java

followed by a command that creates an executable file called N that runs the command

java PN

when executed (so that it makes the execution of Java programs look the same as ex-
ecution of C/C++ programs). The our-includes directory (typically ~ctest/include)
contains contest.h for C/C++, which also supplies the standard header files. The files
in ~ctest/submission-tests/N , where N is a problem number, contain the input files
and standard output files that submit uses for its simple tests.

All input will be placed in stdin. You may assume that the input conforms to any
restrictions in the problem statement; you need not check the input for correctness. Con-
sequently, you C/C++ programmers are free to use scanf to read in numbers and strings
and gets to read in lines.

Terminology. The terms free format and free-format input indicate that input numbers,
words, or tokens are separated from each other by arbitrary whitespace characters. By
standard C/UNIX convention, a whitespace character is a space, tab, return, newline,
formfeed, or vertical tab character. A word or token, accordingly, is a sequence of non-
whitespace characters delimited on each side by either whitespace or the beginning or end
of the input file.

2008 Programming Problems 4

Scoring. Scoring will be according to the ACM Contest Rules. You will be ranked by
the number of problems solved. Where two or more contestants complete the same number
of problems, they will be ranked by the total time required for the problems solved. The
total time is defined as the sum of the time consumed for each of the problems solved.
The time consumed on a problem is the time elapsed between the start of the contest and
successful submission, plus 20 minutes for each unsuccessful submission, and minus the
time spent judging your entries. Unsuccessful submissions of problems that are not solved
do not count. As a matter of strategy, you can derive from these rules that it is best to
work on the problems in order of increasing expected completion time.

Protests. Should you disagree with the rejection of one of your problems, first prepare
a file containing the explanation for your protest, and then use the protest command
(without arguments). It will ask you for the problem number, the submission number
(submission 1 is your first submission of a problem, 2 the second, etc.), and the name
of the file containing your explanation. Do not protest without first checking carefully;
groundless protests will be result in a 5-minute penalty (see Scoring above). The Judge
will not answer technical questions about C, C++, Java, the compilers, the editor, the
debugger, the shell, or the operating system.

Notices. During the contest, the Web page at URL

http://inst.cs.berkeley.edu/~ctest/contest/announce.html

will contain any urgent announcements, plus a running scoreboard showing who has solved
what problems. Sometimes, it is useful to see what problems others are solving, to give
you a clue as to what is easy.

2008 Programming Problems 5

1. [From the Valladolid archives] An imaging device furnishes digital images of two
machined surfaces that eventually will be assembled in contact with each other. The
roughness of this final contact is to be estimated.

A digital image is composed of the two characters, ‘X’ (marking places where material
is present) and ‘ ’ (blank, indicating space). The first column will always have an ‘X’ in it
and will be part of the left surface. The left surface can extend to the right as contiguous
Xs. Similarly, column N will always have an ‘X’ in it and will be part of the right surface,
where N is furthest right position of any ‘X’ over all rows. The right surface can extend to
the left from column N as contiguous Xs. Both surfaces will have the same vertical extent
(the same number of rows), so that there is a section of left surface and right surface on
each row of the image.

For example, here is a possible image (with blanks shown as ‘ ’:

Left Surface

XXXX XXXXX

XXX XXXXXXX

XXXXX XXXX

XX XXXXXX

XXXX XXXX

XXX XXXXXX

Right Surface

In this example, each line is 30 characters long
In each row of the image, there can be zero or more blanks separating the left surface

from the right surface. There will never be more than a single blank region in any row.
For each image given, you are to determine the total empty area—the total number of

blanks between the surfaces—that will exist after the left surface has been brought into
contact with the right surface. The two surfaces are brought into contact by displacing
them strictly horizontally towards each other until a rightmost ‘X’ of the left surface of
some row is immediately to the left of the leftmost ‘X’ of the right surface of that row.
There is no rotation or twisting of these two surfaces as they are brought into contact;
they remain rigid, and only move horizontally.

The input consists of a series of digital images. Each image consists of one or more
lines of Xs and blanks, all having the same length and all beginning and ending with X.
There will be an empty line after every data set.

For each image in the series, output the total empty area, using the format shown in
the example.

2008 Programming Problems 6

Example:
Input Output

XXXX XXXXX

XXX XXXXXXX

XXXXX XXXX

XX XXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXX XX

Image 1: 4

Image 2: 0

Image 3: 0

2008 Programming Problems 7

2. Using what is essentially long division, one can divide one polynomial by another
just as can divide one integer by another to get a quotient and remainder. Thus we may
compute

2x4 − x3 + 3x2 − x + 3

2x2 + 1

as follows:
x2 −1

2
x +1

2x2 + 1 2x4 −x3 +3x2 −x +3
2x4 +x2

− x3 2x2 −x +3

−x3 − 1

2
x

2x2 − 1

2
x +3

2x2 +1

− 1

2
x +2

so that

2x4 − x3 + 3x2 − x + 2

2x2 + 1
= x2 −

1

2
x + 1, with a remainder of −

1

2
x + 2.

As a check,

2x4 − x3 + 3x2 − x + 3 = (2x2 + 1)(x2 −
1

2
x + 1) −

1

2
x + 2.

As a slight variation, the coefficients of the polynomial don’t have to be real numbers;
they can come from a finite field, such as GF(5), a fancy name for the integers modulo 5.
In this field,

2x4 − x3 + 3x2 − x + 3

2x2 + 1
= x2 + 2x + 1, with a remainder of 2x + 2,

since with mod 5 arithmetic,

2x4 − x3 + 3x2 − x + 3 = 2x4 + 4x3 + 3x2 + 4x + 2 = (2x2 + 1)(x2 + 2x + 1) + 2x + 2.

As another example, over the same field,

x6 − 4

x − 2
= x5 + 2x4 + 4x3 + 3x2 + x + 2

with a remainder of 0 (as you can see, the exponents of x are just ordinary integers, and
not mod 5 like the coefficients).

Write a program that computes quotients and remainders of polynomials over GF(p)
for any prime p (these aren’t the only finite fields, but let’s keep it simple). The input
to your program will consist of a number of sets of integers in free format. Each set will
start with a positive integer, p ≤ 1000003, which will always be prime. Next will come two

2008 Programming Problems 8

integers M and N , indicating the degrees of the two polynomials to be divided. Finally
will come M + 1 integers in the range 0 to p − 1 giving the coefficients of the dividend
starting with the constant term, followed by N + 1 integers (also in the range 0 to p − 1)
giving the coefficients of the divisor, starting with the constant term. The coefficients of
the high-order (last input) term of each polynomial will be non-zero.

The output will echo the dividend and divisor and give the quotient and remainder
using the format shown in the example below. Be careful about the details illustrated in
the output. The 0 polynomial prints as ‘0’. Otherwise, suppress terms with coefficients of
0, the ‘+’ sign on the high-order term, and remainders of 0.

Example:
Input Output

5

4 3 4 3 4 2

2 1 0 2

2

4 1 1 0 1 1

2 1 1 1

3 0 1 0 2

Case #1: 2x^4+4x^3+3x^2+4x^1+3 / 2x^2+1 = 1x^2+2x^1+1 remainder 2x^1+2 mod 5

Case #2: 1x^4+1x^3+1x^1+1 / 1x^2+1x^1+1 = 1x^2+1 mod 2

Case #3: 1 / 2 = 2 mod 3

2008 Programming Problems 9

3. [Adapted from the Valladolid archives] Consider binary trees whose nodes are labeled
with single digits and letters (upper- and lowercase, case-sensitive). Given the preorder
(root, left subtree, right subtree) node order and the inorder (left subtree, root, right
subtree) node order for the same tree, it is possible to reconstruct the tree, assuming no
two nodes in the tree have the same label. For example, given the preorder traversal order
“DBACEGF” and the inorder traversal order “ABCDEFG,” you can compute that the
tree these come from is

D

/ \

/ \

B E

/ \ \

/ \ \

A C G

/

/

F

You are to write a program to do this reconstruction on any such tree.
The input consists of one or more cases in free format. Each case consists of two non-

empty strings PRE and IN, representing the preorder traversal and inorder traversal of a
non-empty binary tree, and consisting of letters and digits. Case is significant.

For each test case, print the reconstructed tree’s postorder traversal (left subtree, right
subtree, root), using the format shown in the example.

Example:
Input Output

DBACEGF

ABCDEFG

BCAD CBAD

Case 1: ACBFGED

Case 2: CDAB

2008 Programming Problems 10

4. Most of the inhabitants of the as-yet undiscovered planet Alpha Centauri B III worship
the god V’tr’i, a rather volatile sort of diety. On any given day, this god, so the priests
say, has one of five moods: content, vengeful, whimsical, joyous, or angry. The weather
on a given day depends upon his mood that day, but not in an entirely predictable way.
When he is content, for example, there can be sun, clouds, or rain. When angry, there can
be rain, snow, or sleet. And so forth. His mood varies from day to day, with the mood on
any given day influencing the mood on the next day. The Priesthood of V’tr’i is extremely
meritocratic, with priests gaining status depending on how successful they are in keeping
their god reasonably happy. Therefore, there is considerable interest in deducing the god’s
moods during the periods when a given priest is given charge of the sacred rites. Your task
is to aid the Council of V’tr’i in its periodic evaluations by giving them a tool to guess
retrospectively at the god’s moods, specifically a program that will read in a history of the
weather for a sequence of days and produce as output the sequence of the god’s moods
that would most likely account for it.

The priests believe they know the likelihoods of each possible weather condition, given
each possible mood. They also believe they know the likelihood that the god will be in any
given mood, given the mood he was in the previous day. However, priests, as always, have
their factions, which generally possess differing ideas as to what these likelihoods might be.
Each faction has sacred tables with entries giving the percentage probabilities of weather
conditions and subsequent moods given the day’s mood, like this:

Weather Next Mood

Mood Sun Clouds Rain Sleet Snow Joy. Cont. Whim. Ang. Ven.

Joyous 60 20 10 5 5 40 40 10 10 0
Content 30 30 20 10 10 30 30 20 10 10
Whimsical 20 20 20 20 20 20 20 20 20 20
Angry 10 10 30 20 30 10 10 20 30 30
Vengeful 0 10 30 40 20 0 20 40 30 10

This particular table tells us, for example, that when joyous, V’tr’i has a probability
of 0.6 (60%) of sending sun, and a probability of 0.1 (10%) of being angry the next day. If
we think that on a particular day, the god has an equal (20%) probability of having any
particular mood, then we initially expect that the probability that there will be sun on
Monday and rain on Tuesday, and that V’tr’i will be joyous on both days is

P (initially joyous) × P (sun when joyous) × P (joyous next day when joyous today)

×P (rain when joyous)

= 0.2 × 0.6 × 0.4 × 0.1

= 0.0048.

and that the probability of having the same weather (sunny then rainy) and that the god
will be joyous on Monday and content on Tuesday is 0.2× 0.6× 0.4× 0.2 = 0.0096. If the
weather is indeed sunny on Monday and rainy on Tuesday, the latter sequence of moods
(joyous, then content) turns out to be the most likely.

2008 Programming Problems 11

The input to your program, in free format, will begin with the 50 non-negative integer
percentages from such a table in the order shown in the example above. Next will come
five integers giving a guess as to the initial probabilities on the first day of a priest’s turn
at officiating that the god is in each of his five possible moods, again in the order used
in the table above. Finally, comes a sequence of words from the set { sun, clouds, rain,
sleet, snow }, giving the weather on each of the days being considered.

The output will consist of a sequence of words from the set { joyous, content,
whimsical, angry, vengeful }, giving the most likely corresponding sequence of moods
for the god on those days. Use the format in the example below.

Example:
Input Output

60 20 10 5 5 40 40 10 10 0

30 30 20 10 10 30 30 20 10 10

20 20 20 20 20 20 20 20 20 20

10 10 30 20 30 10 10 20 30 30

0 10 30 40 20 0 20 40 30 10

20 20 20 20 20

sun rain

joyous content

2008 Programming Problems 12

5. [From the Valladolid archives] There are many different types of electoral system.
In a block voting system, the members of a party do not vote individually as they like,
but instead must collectively accept or reject a proposal. Although a party with many
votes clearly has more power than a party with few votes, the votes of a small party can
nevertheless be crucial when they are needed to obtain a majority. Consider for example
the following five-party system:

Party # of votes
A 7
B 4
C 2
D 6
E 6

Coalition {A, B} has 7 + 4 = 11 votes, which is not a majority. When party C joins
coalition {A, B}, however, {A, B, C} becomes a winning coalition with 7 + 4 + 2 = 13
votes. So even though C is a small party, it can play an important role.

As a measure of a party’s power in a block voting system, John F. Banzhaf III proposed
to use the power index. The key idea is that a party’s power is determined by the number of
minority coalitions that it can join and turn into (winning) majority coalitions. A coalition
forms a majority by having more than half the total votes. The empty coalition, therefore,
is a minority coalition. In the example just given, a majority coalition must have at least 13
votes.

In an ideal system, a party’s power index is proportional to the number of members of
that party. Your task is to write a program that, given an input as shown above, checks
compliance with this ideal by computing the power index of each party.

The input consists of a number of cases in free format, for each of which your program
is to produce a report. Each case begins with an integer P , 1 ≤ P ≤ 20, giving the number
of parties for that case. This is followed by P positive integers, giving the numbers of
members of each of the parties. No electoral system will have more than 1000 votes.

For each case, you must generate one line of output for each party, giving its power
index. Use the format shown in the example on the next page.

2008 Programming Problems 13

Example:
Input Output

5 7 4 2 6 6

6 12 9 7 3 1 1

3 2 1 1

Case 1:

Party 1 has power index 10

Party 2 has power index 2

Party 3 has power index 2

Party 4 has power index 6

Party 5 has power index 6

Case 2:

Party 1 has power index 18

Party 2 has power index 14

Party 3 has power index 14

Party 4 has power index 2

Party 5 has power index 2

Party 6 has power index 2

Case 3:

Party 1 has power index 3

Party 2 has power index 1

Party 3 has power index 1

2008 Programming Problems 14

6. When a beam of light traveling through one medium (air, for example) impinges
on the flat surface of another medium (glass, for example), the beam bends according to
Snell’s law:

n1 sin θ1 = n2 sin θ2,

where n1 and n2 are the refractive indices of the two media and θ1 and θ2 are the angles
between the beam and the normal (perpendicular) to the surface in the two media.

θ1

θ2

Air (n1 ≈ 1)

Glass (n2 ≈ 1.5)

Wall
(0, y0)

(xw, yw)

This diagram shows the path of a light beam through a glass object, indicating the
definitions of θ1 and θ2.

We’d like a program that, given a description of a polygonal object, the initial path of
a light beam, and the parameters n1, n2, θ1, and θ2, computes the point (if any) at which
the light beam strikes a wall on the right.

The input will consist of multiple sets of data in free format. Each set will start with
floating-point values y0, xw, yw, n2, and an integer N . The n2 is the refractive index of
the object; we fix n1 = 1.0. The light beam starts at position (0, y0) and is aimed in such
a way that if n2 = 1 (so the object does not refract light), it would hit the wall at point
(xw, yw). There then follow 2N floating-point values x1, y1, . . . , xN , yN , where 0 < xi < xw

for all i. The values (xi, yi) are the vertices of the polygon enclosing the refracting material
in clockwise order. This polygon is non-self-intersecting. You may assume that the light
beam will intersect it exactly twice, and that the beam will not intersect the polygon at a
vertex.

The output will consist of one line for each set of input giving the y-coordinate at which
the beam hits the far wall rounded to two decimal places, or the phrase “does not reach the

2008 Programming Problems 15

wall” if the beam is deflected away from the wall. Use the format shown in the examples
below.

Example:
Input Output

-0.75 3.00 2.25 1.5 4

0.75 0.29 2.25 0.87 2.25 -0.87 0.75 -0.29

-0.75 3.00 -1.0 1.5 4

0.75 0.29 2.25 0.87 2.25 -0.87 0.75 -0.29

-0.75 3.00 2.25 20 4

0.25 0.87 1.75 0.29 1.75 -0.29 0.25 -0.87

Case 1: 1.55

Case 2: -1.0

Case 3: does not reach the wall

2008 Programming Problems 16

7. [From a USACO contest] Given a non-empty set of prime numbers, P = {p1, . . . , pn},

we want to find the kth smallest number in the set of all positive numbers whose prime
factors are all in this set. For k = 1, this is always 1, since the set of all prime factors of 1
is empty.

For example, if P = {2, 3, 5}, then the first 20 conforming numbers are

1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27, 30, 32, 36

The input to your program consists of one or more cases in free format. Each case
begins with an integer N giving the number of primes and an integer K giving the index
of the desired number (K = 1 for the smallest, K = 2 for the next larger, etc.). Next come
N distinct prime numbers.

For each case, output the Kth smallest member of the set, using the format shown
below. You may assume that the answers are always ≤ 231 − 1.

Example:
Input Output

3 20

2 5 3

3 10

3 7 11

4 5300 2 3 5 7

Case 1: 36

Case 2: 63

Case 3: 1120000000

2008 Programming Problems 17

8. You have probably all seen examples of PDF417-style
bar codes, such as the one shown here. This is a type
of stacked linear bar code: it consists of rows of simple
bar code that have been squished vertically and then stacked on top of each other. An
engineer from the small country of Outer Freedonia noticed these on postage he received
from the US, and thought it might be a nice idea to introduce its use in his country as
well. Unfortunately, he couldn’t afford (or was too cheap to pay) the fee for obtaining the
full specification, so he did some reverse engineering and came up with a much simplified
(albeit very inefficient) version.

Freedonian bar code encodes only decimal digits (0–9). Besides start and stop bars
on the sides (which we’ll ignore), there is a pattern of eight white or black bars for each
symbol, which we can encode in the bits of a single byte as a number in the range 0–255.
Now in fact, there are three different encodings of the digits 0–9 used, which we’ll call
encodings (or clusters, to use the original terminology) E0, E1, and E2:

Digit

0 1 2 3 4 5 6 7 8 9
E0 0x04 0x08 0x0c 0x10 0x14 0x18 0x1c 0x20 0x24 0x2c
E1 0x45 0x49 0x4d 0x51 0x55 0x59 0x5d 0x61 0x65 0x6d
E2 0x86 0x8a 0x8e 0x92 0x96 0x9a 0x9e 0xa2 0xa6 0xaa

These encodings are disjoint: none of the 10 valid codes in E0, for example, is a valid code
in E1 or E2. The first row of a bar code uses encoding E0, the next used E1, the next E2,
and the next E0, and so forth, cycling through the three encodings. There is a reason for
this: when people use hand-held laser scanners—which read the bars of a given encoding
one line at a time, left-to-right, top-to-bottom—they usually don’t align them perfectly,
so that, for example, a scan line starts start out scanning line #5 on the left, and then,
half-way across, has drifted upwards and start reading from line #4 (or downwards and is
reading from line #6). By using different, non-overlapping alphabets, you can detect this
situation and reconstruct the code (since usually, your scan of the next line or the previous
one will also be slanted, and will pick up the missing symbols). Sometimes, the scanner
will skip to the next line in the middle of a symbol. When this happens, the scanner will
output an invalid symbol (not in any encoding).

Each row in a given code has the same number of symbols. The last two symbols encode
check digits, so that the sum of all the base-10 digits in a line (including the check digit)
add up to 0 modulo 10. The first and last line of every bar code (whose decodings are
thrown away) contain all 0-digits, in the appropriate encoding for those lines (thus making
sure that some scan line picks up the first and last real lines of data). You may lose part
of these lines if the scanner goes off the top or bottom of the barcode, but since they are
thrown away anyway, it does not matter.

For example, the digit string ‘314159265’ can be broken into five lines of three real
symbols and a check digit as shown on the left below. These can then be encoded as
shown in hex coding after that. This encoding corresponds to the bar code shown in the
middle. If the scanner is tilted as shown by the dashed lines, the scanner might pick up

2008 Programming Problems 18

the values shown on the right. In this case, we lose the two digits (including the check
digit) at the end of the last (all encoded 0s) line, and all the symbols on each line are
valid. In other cases (where the scanner changes lines in the middle of a symbol), there
will be invalid symbols scanned, and a decoder has to use the check digit to reconstruct
the missing symbol. It is also possible for the check digit to be corrupted, but in that case,
all other symbols on the line will have been scanned correctly.

0000 04040404

3142 5149554d

1595 8a9aaa9a

2657 0c1c1820

0000 45454545

04040000

51490404

8a9a554d

0c1caa9a

45451820

Your job is to write a decoding program, that, given the streams of bits of each line
from a scanner (in hex form), reconstructs the encoded numerals. Each scan line will have
the same number of digits. If the scanner slips off the top or bottom of a bar code, it sees
0x00’s (which are not valid codes in any of the Ei). You may assume that if the scanner
is tilted, it scans at most two rows, as in the example, and that each symbol it returns is
either a correct symbol (from some line) or is not in any of the encodings. We will not
assume that the tilting is completely consistent between lines; the scanner may not always
change lines at the same point for each scan line.

The input consists of a number of sets in free format. Each set begins with an even
integer N > 2 indicating the number of symbols (including check digit) on each line, and
an integer M > 2 indicating the number of lines. This is followed by M 2N − digit strings
of hexadecimal digits (no leading ‘0x’), giving the scan lines. The first and last lines of
the bar code encode all 0s followed by check digits 0 (also encoded). It is not necessary
to reconstruct the first and last lines (since they are known). All input sets will be valid
encodings according to the rules above.

For each input set, the output consists of the set number followed by the string of
(M −2)(N −1) decoded digits (without check digits and without the first and last all-zero
lines) in the format shown in the examples below.

2008 Programming Problems 19

Example:
Input Output

4 5

04040000

51490404

8a9a554d

0c1caa9a

45451820

4 5

04040000

51480404

8a9b554d

0c1caa9a

45451820

Set 1: 314159265

Set 2: 314159265

