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Outline

Materials Science — to the rescue for a sustainable
energy future

A crash course on density functional theory
Not a exascale poster child

Ok — let’s say | solve the computing — does data-
driven materials design work???

The Materials Project - Towards the Materials
Genome



Fuel Cell Vehicles
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Efficiency of PV
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Lithium-ion batteries for electric vehicles

1989

“No, no, no, no, this sucker's electrical, but |

. need a nuclear reaction to generate the 1.21
. Anode . o

g e g (voriverie gigawatts of electricity ! “

70%-80% of cell cost is materials

Scparator

Higher energy density materials
reduces cost per kWh of stored energy



Materials Play a Strategic Role Today
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Japan arrest Chinese China blocks ja’j:‘)an releases
boat captain shipments of Rare captain

Earth Metals to

Japan

‘ Japan invests in induction motors....
“Toyota Readying Motors That Don’t Use Rare Earths...”. Jan 14, 2011 1:50 PM PT



Traditional Materials Discovery Timeline

[ Solar ][ Hydrogen ] [ Permanent magnets ][ Construction J
(cement, steel, ..)

[ Thermoelectrics ][ Energy Storage ][ ]

18 Years...from the average new materials discovery to
commercialization
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nvented, N —  Litniumion [N
S. Whittingham
Tltamum Diamond-like Thin

Polycarbonate | Films

Amorphous soft
magnets

Materials Data from: Eagar, T.; King, M. Technology Review (00401692) 1995, 98, 42.




How to compute real world materials properties?

Engineering
Properties

Quantum Mechanics

] Corrosion,

I e B strength,energy
g e i density, ..
e

“E=325.67 kJ”






Aim of ab initio calculations

PeriOdiC Table A IVA VA VIA VI]Ai
of the Elements o F ]

Atomic Numbers

Solve quantum mechanics
at for the material

Predict physical and chemical
properties of systems




Standard DFT — steady state

HWY = EW

As you can see, quantum mechanics is “simply” an eigenvalue problem



Summary of problem to solve

Assume that the nuclei (Mass M,) are at: Assume that the electrons (mass m,) are at:
Ry, Ry oy Ry, SPLOYRON .
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Summary of problem to solve

Assume that the nuclei (Mass M,) are at: Assume that the electrons (mass m,) are at:
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Electrons are difficult!

* The mathematical difficulty of solving the
Schrodinger equation increases rapidly with N

* The number of computations scales as eN

* With modern supercomputers we can solve this
directly for a very small number of electrons
(maybe 4 or 5 electrons)

Materials contain of the order of 10°° electrons



Interaction between

Interaction with nucleus
electrons

Kinetic Energy
Many electrons

Replace e-e interaction by average
potential

One electron
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Approximated in the Local Density Appr'oximaLion (LDA) or Generalized
Gradient Approximation (66A) to Density Functional Theory (DFT)

4_____________

V.¢+ = average electrostatic potential from other electrons + exchange
effect (Pauli principle) + correlation effects



Potential (V)

O2 evolved per MPO4

Many properties can be computed
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Computations are scalable (or are they?)

3

Total energy
Optimized structure
Magnetic ground state
Charge density

Band structure / DOS
... etc
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Bummer — ‘exascale’ not working for DFT... ®

DFT codes are trivially parallelizable over k-points

BUT after every reciprocal k point calculation — all the energies
(information) have to be assembled to calculate charge density
and total energy... happens hundreds of times per calculation.

too much communication between nodes!

More sophisticated parallellization schemes exist, but fact remains
— no DFT code scales better than 30-40 nodes

So what do we do? We run one material per node...no
intercommunication needed and large # nodes can be requested



* Our computations have rather unpredictable runtimes
* Think swarms of workers — one is very slow, another one terrible

efficient...

Time to solution for 50,000 DFT Simulations over the ICSD Database, 2,6 M core-hour:
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50K DFT runs lasting from 10s to 10 days
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* Must ask for ~upper bound walltime in batch script 2
terrible for the unfinished jobs

* Re-starting...



High-Throughput Computing

* Requires scheduler or run-time tools to
facilitate running large numbers of jobs with
variable duration time

* |nverse of typical large-scale simulations of
inter-connected tasks (climate, astronomy, ...)



HTC Principles

HTC comes down to two concepts:

e Concurrency: how many cores?

— Assuming tasks are independent then core-hours needed for N jobs is
just T=2.t,
— What if Tis _really big? = need HPC
* Policy : for how long and in what groupings?

— Local resource : do what you want within concurrency limits, require T
be small

— Shared resource : map workflow to policy
* N _really big may present issues



Shared Resources:
Some Challenges are Unavoidable

. Real job data from NERSC
Long “small” jobs and short “large”..small"=

jobs are natural enemies, hard to ]
coschedule

large

Don’t get mad, get even (or get
things done)

cores—>

Get the throughput you want
Read the queue policies

time—>

long queue wait
short queue wait



cores—>

Queueing:
long+small vs. short+tall

On a shared machine, big jobs “drain” the queue

time—>

long queue wait

short queue wait



HTC on HPC: Modern Day

* |f you need to run lots of jobs and can do that
with good performance then do what works.

* |f the number of jobs does not match with the
job scheduling policies then you may consider
consolidation.

* Optimization often requires consolidating
tasks,or jobs to act in synchrony.
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Gartner Hype Cycle : graphic representation of the maturity and adoption of
technologies and applications




Formulate
Research
Problem

jobs jobs jobs

jobs
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Understand
& Publish!

*Plan where to put effort

*Optimization in one area
can de-optimize another

*Timings come from timers
and also from your calendar,
time spent coding

*Sometimes a slower
algorithm is simpler to verify
correctness
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A few notes on queue optimization

Consider your schedule Consider the queue
constraints

* Charge factor

* regular vs. low  Run limit
* Scavenger queues * Queue limit
e Xfer queues e Wall limit
* Downshift concurrency * Soft (can you checkpoint?)

4? U.S. DEPARTMENT OF Office of
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