
Spreadsheet display from Microsoft Excel

spreadsheet

cell;

425

spreadsheet
exit

c4
a f

??

(load "spread.scm")

(put 6500 c4)

24 Example: A Spreadsheet Program

Until now, you may have felt that the programs you’ve been writing in Scheme don’t act
like other computer programs you’ve used. In this chapter and the next, we’re going to
tie together almost everything you’ve learned so far to write a program, just
like the ones accountants use.

This chapter describes the operation of the spreadsheet program, as a user manual
would. The next chapter explains how the program is implemented in Scheme.

You can load our program into Scheme by typing

To start the program, invoke the procedure with no arguments; to
quit the spreadsheet program, type .

A spreadsheet is a program that displays information in two dimensions on the
screen. It can also compute some of the information automatically. On the next page
is an example of a display from our spreadsheet program. The display is a rectangle of
information with six columns and 20 rows. The intersection of a row with a column is
called a for example, the cell contains the number 6500. The column letters
(through) and row numbers are provided by the spreadsheet program, as is the
information on the bottom few lines, which we’ll talk about later. (The at the very
bottom is the spreadsheet prompt; you type commands on that line.) We typed most of
the entries in the cells, using commands such as

d
b c

b4

formula

426 Part VI Sequential Programming

* We did it by saying

but we aren’t going to talk about the details of formulas for a while longer.

-----a---- -----b---- -----c---- -----d---- -----e---- -----f----

1 NAME NUMBER PRICE GROSS DISCOUNT NET
2 Widget 40.00 1.27 50.80 0.00 50.80
3 Thingo 203.00 14.95 > 3034.85< 15.00 2579.62
4 Computer 1.00 6500.00 6500.00 8.00 5980.00
5 Yacht 300.00 200000.00 60000000.+ 0.00 60000000.+
6
7
8
9 TOTALS 60009585.+ 60008610.+

10
11
12
13
14
15
16
17
18
19
20
d3: 3034.85
(* b3 c3)
??

(put (* (cell b) (cell c)) d)

What’s most useful about a spreadsheet is its ability to compute some of the cell
values itself. For example, every number in column is the product of the numbers in
columns and of the same row. Instead of putting a particular number in a particular
cell, we put a in all the cells of the column at once.* This implies that when we
change the value of one cell, other cells will be updated automatically. For example, if
we put the number 5 into cell , the spreadsheet will look like this:

> 3034.85<

d3: 3034.85
(* b3 c3)

b4 d4 f4 d9
f9

d3

d3 3034.85
(* b3 c3)

selected

Chapter 24 Example: A Spreadsheet Program 427

In addition to cell , the spreadsheet program has changed the values in , , ,
and .

One detail we haven’t mentioned so far is that at any moment there is one cell.
Right now cell is selected. You can tell that because of the arrowheads surrounding it
in the display, like this:

Also, the lines

at the bottom of the screen mean that cell is selected, its value is , and its
formula is .

-----a---- -----b---- -----c---- -----d---- -----e---- -----f----

1 NAME NUMBER PRICE GROSS DISCOUNT NET
2 Widget 40.00 1.27 50.80 0.00 50.80
3 Thingo 203.00 14.95 > 3034.85< 15.00 2579.62
4 Computer 5.00 6500.00 32500.00 8.00 29900.00
5 Yacht 300.00 200000.00 60000000.+ 0.00 60000000.+
6
7
8
9 TOTALS 60035585.+ 60032530.+

10
11
12
13
14
15
16
17
18
19
20
d3: 3034.85
(* b3 c3)
??

return enter

portable.

not

428 Part VI Sequential Programming

Limitations of Our Spreadsheet

Spreadsheet Commands

In commercial spreadsheet programs, you generally select a cell with arrow keys or by
clicking on it with a mouse. The highlighted cell is typically displayed in inverse video,
and there might be thin lines drawn in a grid on the screen to separate the cells.

Our program leaves all this out for two reasons. First, details like this don’t add very
much to what you learn from studying the program, but they take a disproportionate
effort to get exactly right. Second, the facilities needed in Scheme to control screen
graphics are specific to each model of computer. We couldn’t write a single program
that would work in all versions of Scheme. (A program that works in all versions is called

)

Similarly, our program prints an entire new screenful of information after every
command. A better program would change only the parts of the screen for which the
corresponding values have changed. But there is no uniform way to ask Scheme to print
at a particular position on the screen; some versions of Scheme can do that, but not using
standard procedures.

Also, of course, if you spend $500 on a spreadsheet program, it will have hundreds
of bells and whistles, such as graphing, printing your spreadsheet on paper, changing
the widths of columns, and undoing the last command you typed. But each of those is a
straightforward extension. We didn’t write them all because there are only two of us and
we’re not getting paid enough! You’ll add some features as exercises.

When you begin the spreadsheet program, you will see an empty grid and a prompt at
the bottom of the screen.

Most spreadsheet programs are controlled using single-keystroke commands (or
equivalent mouse clicks). That’s another thing we can’t do entirely portably in Scheme.
We’ve tried to compromise by including one-letter command names in our program, but
you do have to type the or key after each command. The single-letter
commands are for simple operations, such as selecting a cell one position up, down, left,
or right from the previously selected cell.

For more complicated commands, such as entering values, a longer notation is
obviously required. In our program we use a notation that looks very much like that of
a Scheme program: A command consists of a name and some arguments, all enclosed
in parentheses. However, the spreadsheet commands are Scheme expressions. In

Moving the Selection

f
b
n
p

f b n p

select

a z 1 30

Chapter 24 Example: A Spreadsheet Program 429

(put 6500 c4)

(put 6500 ’c4) ;; wrong!

?? (f 4)

(select e12)

particular, the arguments are not evaluated as they would be in Scheme. For example,
earlier we said

If this were a Scheme expression, we would have had to quote the second argument:

There are four one-letter commands to move to a new selected cell:

Command Name Meaning

move Forward (right)
move Back (left)
move to Next line (down)
move to Previous line (up)

(These command names are taken from EMACS, the industry standard text editor.)

If you want to move one step, you can just type the letter , , , or on a line
by itself. If you want to move farther, you can invoke the same commands in Scheme
notation, with the distance to move as an argument:

Another way to move the selection is to choose a particular cell by name. The
command for this is called :

The spreadsheet grid includes columns through and rows through . Not all
of it can fit on the screen at once. If you select a cell that’s not shown on the screen, then
the program will shift the entire screen display so that the rows and columns shown will
include the newly selected cell.

(put ’peter d)

Putting Values in Cells

put

’word

"Widget"

+

()

put

peter d
d1

d30

value

430 Part VI Sequential Programming

As we’ve already seen, the command is used to put a value in a particular cell. It
can be used with either one or two arguments. The first (or only) argument is a value.
If there is a second argument, it is the (unquoted) name of the desired cell. If not, the
currently selected cell will be used.

A value can be a number or a quoted word. (As in Scheme programming, most
words can be quoted using the single-quote notation , but words that include
spaces, mixed-case letters, or some punctuation characters must be quoted using the
double-quote string notation .) However, non-numeric words are used only as
labels; they can’t provide values for formulas that compute values in other cells.

The program displays numbers differently from labels. If the value in a cell is a
number, it is displayed at the right edge of its cell, and it is shown with two digits following
the decimal point. (Look again at the screen samples earlier in this chapter.) If the value
is a non-numeric word, it is displayed at the left edge of its cell.

If the value is too wide to fit in the cell (that is, more than ten characters wide), then
the program prints the first nine characters followed by a plus sign () to indicate that
there is more information than is visible. (If you want to see the full value in such a cell,
select it and look at the bottom of the screen.)

To erase the value from a cell, you can put an empty list in it. With this one
exception, lists are not allowed as cell values.

It’s possible to put a value in an entire row or column, instead of just one cell. To do
this, use the row number or the column letter as the second argument to . Here’s an
example:

This command will put the word into all the cells in column . (Remember that
not all the cells are visible at once, but even the invisible ones are affected. Cells
through are given values by this command.)

What happens if you ask to fill an entire row or column at once, but some of the
cells already have values? In this case, only the vacant cells will be affected. The only
exception is that if the you are using is the empty list, indicating that you want to
erase old values, then the entire row or column is affected. (So if you put a formula in
an entire row or column and then change your mind, you must erase the old one before
you can install a new one.)

Formulas

put

d6 b3
c5

d6
b3 c5

b3 d6

b4

lambda

put

d b
c same

Chapter 24 Example: A Spreadsheet Program 431

(put (+ b3 c5) d6)

(put (* d6 (+ b4 92)) a3)

(put (* b2 c2) d)

We mentioned earlier that the value of one cell can be made to depend on the values of
other cells. This, too, is done using the command. The difference is that instead of
putting a constant value into a cell, you can put a formula in the cell. Here’s an example:

This command says that the value in cell should be the sum of the values in and
. The command may or may not have any immediately visible effect; it depends on

whether those two cells already have values. If so, a value will immediately appear in ;
if not, nothing happens until you put values into and .

If you erase the value in a cell, then any cells that depend on it are also erased. For
example, if you erase the value in , then the value in will disappear also.

So far we’ve seen only one example of a formula; it asks for the sum of two
cells. Formulas, like Scheme expressions, can include invocations of functions with
sub-formulas as the arguments.

The “atomic” formulas are constants (numbers or quoted words) and cell references
(such as in our example).

Not every Scheme function can be used in a formula. Most important, there is no
in the spreadsheet language, so you can’t invent your own functions. Also, since

formulas can be based only on numbers, only the numeric functions can be used.

Although we’ve presented the idea of putting a formula in a cell separately from
the idea of putting a value in a cell, a value is really just a particularly simple formula.
The program makes no distinction internally between these two cases. (Since a constant
formula doesn’t depend on any other cells, its value is always displayed right away.)

We mentioned that a value can be into an entire row or column at once. The
same is true of formulas in general. But this capability gives rise to a slight complication.
The typical situation is that each cell in the row or column should be computed using the
same algorithm, but based on different values. For example, in the spreadsheet at the
beginning of the chapter, every cell in column is the product of a cell in column and
a cell in column , but not the cell for every row. If we used a formula like

not

432 Part VI Sequential Programming

d 50.80

Cell

d5 (cell b) b5 (cell 12)
d12

cell

d3 d2 c2

cell

(put (* b2 c2) d2)
(put (* b3 c3) d3)
(put (* b4 c4) d4)

(put (* (cell b) (cell c)) d)

(put (- (cell 2) (cell <1 2)) 3)

-----a---- -----b---- -----c---- -----d---- -----e---- -----f----

1 MONTH January February March April May
2 PRICE 70.00 74.00 79.00 76.50 81.00
3 CHANGE 4.00 5.00 -2.50 4.50

then every cell in column would have the value . Instead we want the equivalent
of

and so on. The spreadsheet program meets this need by providing a notation for cells
that indicates position relative to the cell being computed, rather than by name. In our
case we could say

can take one or two arguments. In this example we’ve used the one-argument
version. The argument must be either a letter, to indicate a column, or a number between
1 and 30, to indicate a row. Whichever dimension (row or column) is specified by the
argument will be the same as that of the cell being computed. So, for example, if we are
computing a value for cell , then refers to cell , but would
refer to cell .

The one-argument form of is adequate for many situations, but not if you
want a cell to depend on one that’s both in a different row and in a different column.
For example, suppose you wanted to compute the change of a number across various
columns, like this:

The value of cell , for example, is a function of the values of cells and .

To create this spreadsheet, we said

The first appearance of asks for the value of the cell immediately above the one
being calculated. (That is, it asks for the cell in row 2 of the same column.) But the
one-argument notation doesn’t allow us to ask for the cell above and to the left.

*
<3

>5

b3
(- b2 a2) a2 PRICE b3

Chapter 24 Example: A Spreadsheet Program 433

Displaying Formula Values

Loading Spreadsheet Commands from a File

(put (- (cell 2) (cell <1 2)) 3)

(put (- (cell 2) (cell <1 <1)) 3)

(put (- (cell * 2) (cell <1 2)) 3)

(put (- (cell * <1) (cell <1 2)) 3)

(put (- (cell <0 <1) (cell <1 <1)) 3)

In the two-argument version, the first argument determines the column and the
second determines the row. Each argument can take any of several forms. It can be a
letter (for the column) or number (for the row), to indicate a specific column or row. It
can be an asterisk () to indicate the same column or row as the cell being calculated.
Finally, either argument can take the form to indicate a cell three before the one
being calculated (above or to the left, depending on whether this is the row or column
argument) or to indicate a cell five after this one (below or to the right).

So any of the following formulas would have let us calculate the change in this
example:

When a formula is put into every cell in a particular row or column, it may not be
immediately computable for all those cells. The value for each cell will depend on the
values of the cells to which the formula refers, and some of those cells may not have
values. (If a cell has a non-numeric value, that’s the same as not having a value at all
for this purpose.) New values are computed only for those cells for which the formula
is computable. For example, cell in the monthly change display has the formula

, but the value of cell is the label , so no value is computed for .

Formulas can be used in two ways. We’ve seen that a formula can be associated with a
cell, so that changes to one cell can automatically recompute the value of another. You
can also type a formula directly to the spreadsheet prompt, in which case the value of the
formula will be shown at the bottom of the screen. In a formula used in this way, cell
references relative to “the cell being computed” refer instead to the selected cell.

Sometimes you use a series of several spreadsheet commands to set up some computation.

filename

load

put
put

(put "Thingo" a3)

(load " ")

Application Programs and Abstraction

metaphor

documentation

generalization

loses

434 Part VI Sequential Programming

For example, we had to use several commands such as

to set up the sample spreadsheet displays at the beginning of this chapter.

If you want to avoid retyping such a series of commands, you can put the commands
in a file using a text editor. Then, in the spreadsheet program, use the command

This looks just like Scheme’s (on purpose), but it’s not the same thing; the file
that it loads must contain spreadsheet commands, not Scheme expressions. It will list the
commands from the file as it carries them out.

We’ve talked throughout this book about the importance of abstraction, the act of giving
a name to some process or structure. Writing an application program can be seen as the
ultimate in abstraction. The user of the program is encouraged to think in a vocabulary
that reflects the tasks for which the program is used, rather than the steps by which
the program does its work. Some of these names are explicitly used to control the
program, either by typing commands or by selecting named choices from a menu. Our
spreadsheet program, for example, uses the name for the task of putting a formula
into a cell. The algorithm used by the command is quite complicated, but the user’s
picture of the command is simple. Other names are not explicitly used to control the
program; instead, they give the user a with which to think about the work of
the program. For example, in describing the operation of our spreadsheet program,
we’ve talked about rows, columns, cells, and formulas. Introducing this vocabulary in
our program is just as much an abstraction as introducing new procedures
in the program itself.

In the past we’ve used procedural abstraction to achieve of an algo-
rithm, moving from specific instances to a more universal capability, especially when we
implemented the higher-order functions. If you’ve used application programs, though,
you’ve probably noticed that in a different sense the abstraction in the program
generality. For example, a formula in our spreadsheet program can operate only on
data that are in cells. The same formula, expressed as a Scheme procedure, can get its
arguments from anywhere: from reading a file, from the keyboard, from a global variable,
or from the result of invoking some other procedure.

extensible.

Zterm,

extensibility.

Hypertalk Hypercard

Chapter 24 Example: A Spreadsheet Program 435

An application program doesn’t have to be less general than a programming
language. The best application programs are Broadly speaking, this means that
the programmer has made it possible for the user to add capabilities to the program,
or modify existing capabilities. This broad idea of extensibility can take many forms in
practice. Some kinds of extensibility are more flexible than others; some are easier to
use than others. Here are a few examples:

Commercial spreadsheet programs have grown in extensibility. We mentioned that
our spreadsheet program allows the user to express a function only as a formula attached
to a cell. Modern commercial programs allow the user to define a procedure, similar in
spirit to a Scheme procedure, that can then be used in formulas.

Our program, on the other hand, is extensible in a different sense: We provide the
Scheme programs that implement the spreadsheet in a form that users can read and
modify. In the next chapter, in fact, you’ll be asked to extend our spreadsheet. Most
commercial programs are provided in a form that computers can read, but people can’t.
The provision of human-readable programs is an extremely flexible form of extensibility,
but not necessarily an easy one, since you have to know how to program to take advantage
of it.

We have written much of this book using a home computer as a remote terminal to
a larger computer at work. The telecommunication program we’re using, called
has dozens of options. We can set frivolous things like the screen color and the sound
used to attract our attention; we can set serious things like the file transfer protocol
used to “download” a chapter for printing at home. The program has a directory of
telephone numbers for different computers we use, and we can set the technical details
of the connection separately for each number. It’s very easy to customize the program in
all of these ways, because it uses a mouse-driven graphical interface. But the interface is
inflexible. For example, although the screen can display thousands of colors, only eight
are available in Zterm. More important, if we think of an entirely new feature that would
require a modification to the program, there’s no way we can do it. This program’s
extensibility is the opposite of that in our spreadsheet: It’s very easy to use, but limited in
flexibility.

We started by saying that the abstraction in an application program runs the risk of
limiting the program’s generality, but that this risk can be countered by paying attention to
the goal of The ultimate form of extensibility is to provide the full capabilities
of a programming language to the user of the application program. This can be done
by inventing a special-purpose language for one particular application, such as the

language that’s used only in the application program. Alternatively,
the application programmer can take advantage of an existing general-purpose language

Exercises

load

a
b

c
d a c e

a

24.1

24.2

24.3

436 Part VI Sequential Programming

by making it available within the program. You’ll see an example soon, in the database
project, which the user controls by typing expressions at a Scheme prompt. The EMACS
text editor is a better-known example that includes a Lisp interpreter.

For each of the following exercises, the information to hand in is the sequence of
spreadsheet commands you used to carry out the assignment. You will find the
command helpful in these exercises.

Set up a spreadsheet to keep track of the grades in a course. Each column should
be an assignment; each row should be a student. The last column should add the grade
points from the individual assignments. You can make predictions about your grades on
future assignments and see what overall numeric grade each prediction gives you.

Make a table of tax and tip amounts for a range of possible costs at a restaurant.
Column should contain the pre-tax amounts, starting at 50 cents and increasing by
50 cents per row. (Do this without entering each row separately!) Column should
compute the tax, based on your state’s tax rate. Column should compute the 15% tip.
Column should add columns through to get the total cost of the meal. Column
should contain the same total cost, rounded up to the next whole dollar amount.

Make a spreadsheet containing the values from Pascal’s triangle: Each element
should be the sum of the number immediately above it and the number immediately to
its left, except that all of column should have the value 1, and all of row 1 should have
the value 1.

